Security Unlocked

Share

BEC: Homoglyphs, Drop Accounts, and CEO Fraud

Ep. 13

CCI: Cyber Crime Investigation. Another day, another email attack - something smells “phishy” in the network. *Slowly puts on sunglasses and flips up trench coat collar* Time to go to work. 


Just how easy is it for someone to steal your credentials? Because once they’re stolen, and sold for pocket change, it’s open season. Homoglyphs, drop accounts, email forwarding… is it any wonder billions of dollars have been lost to BEC (business email compromise)?


Join hosts Nic Fillingham and Natalia Godyla for a fascinating conversation with Peter Anaman, Director and Principal Investigator of the CELA Digital Crimes Unit, as they unpack the cybercrime section of the Microsoft Digital Defense Report to see what these phishers are up to. Scott Christiansen joins us later in the show to recount his journey to security and his role as an Adjunct Professor for Bellevue University's Master of Science in Cybersecurity, along with some great advice for choosing security as a profession.     

  

In This Episode, You Will Learn:    

•The difference between consumer and enterprise phishing 

•The types of people and professions that are usually targeted in cyber attacks  

•How putting policies on backups and policies to protect the organization in place will help prevent digital crimes 

•The four categories of the internet: the dark web, the surface web, the deep web, and the vetted web 

  

Some Questions We Ask:   

•What would an example of credential phishing look like? 

•What is the end goal for phishers? 

•How are phishing and business email compromise techniques leveraged during the pandemic? 

•What patterns are being seen when it comes to credential phishing? 

•How do you use ML to classify whether a bug is security-related or not? 


Resources:   

Microsoft Digital Defense Report:   

https://www.microsoft.com/en-us/security/business/security-intelligence-report  

  

Peter’s LinkedIn 

https://www.linkedin.com/in/anamanp/ 

  

Scott’s LinkedIn 

https://www.linkedin.com/in/scottchristiansen/ 

  

Nic’s LinkedIn  

https://www.linkedin.com/in/nicfill/  

  

Natalia’s LinkedIn  

https://www.linkedin.com/in/nataliagodyla/  

  

Microsoft Security Blog:   

https://www.microsoft.com/security/blog/


Transcript

(Full transcript can be found at https://aka.ms/SecurityUnlockedEp13)


Nic Fillingham:

Hello and welcome to Security Unlocked, a new podcast from Microsoft, where we unlock insights from the latest in news and research, from across Microsoft Security, Engineering, and Operations teams. I'm Nic Fillingham-


Natalia Godyla:

And I'm Natalia Godyla. In each episode, we'll discuss the latest stories from Microsoft Security, deep dive into the newest thread intel, research, and data science.


Nic Fillingham:

And profile some of the fascinating people working on artificial intelligence in Microsoft Security. If you enjoy the podcast, have a request for a topic you'd like covered, or have some feedback on how we can make the podcast better-


Natalia Godyla:

Please contact us at securityunlocked@microsoft.com or via Microsoft Security on Twitter. We'd love to hear from you.


Natalia Godyla:

Hi Nic. Welcome to Episode 13.


Nic Fillingham:

Thank you, Natalia. Uh, welcome to you as well. I'd just like to say, for the record, I like the number 13. I'm embracing 13. Do we know why 13 is unlucky number? Is there ... Is it just superstition?


Natalia Godyla:

There are a lot of theories. 13 people at the Last Supper, that's part of the reason. 13-


Nic Fillingham:

At, really?


Natalia Godyla:

... steps to the gallows.


Nic Fillingham:

I'd, I think this is baloney. I don't think-


Natalia Godyla:

(laughs)


Nic Fillingham:

... this is real. I think-


Natalia Godyla:

I think-


Nic Fillingham:

... 13's a great number. I think we should celebrate it-


Natalia Godyla:

You know what? That's a, that's a good approach. Let's do it.


Nic Fillingham:

And we should celebrate it-


Natalia Godyla:

With jokes-


Nic Fillingham:

With a joke (laughs). So, before we started rolling, we were lamenting the fact that there are very few, if any, like, true, sort of security, cybersecurity-flavored jokes. So, we sort of created some, or we, we've evolved some. Do you wanna go first, Natalia? 'Cause you've got a joke that I've not heard. So this would be, in theory, a genuine reaction. Do you wanna give me your joke?


Natalia Godyla:

Yeah. Ready?


Nic Fillingham:

Yep.


Natalia Godyla:

What's a secret agent's go-to fashion?


Nic Fillingham:

I don't know. What's a secret agent's go-to fashion?


Natalia Godyla:

Spyware.


Audience:

(laughs)


Nic Fillingham:

Spyware. Yes. That's all right.


Natalia Godyla:

Wow. Didn't-


Nic Fillingham:

It's okay.


Natalia Godyla:

... even try for a chuckle.


Nic Fillingham:

I did. No, I genuinely did. I was like-


Natalia Godyla:

I barely got a smile, guys.


Nic Fillingham:

Aw, I was hoping to like that one. It just-


Natalia Godyla:

(laughs)


Nic Fillingham:

... spyware, yeah. No, it's okay. So, you've heard this already, but the audience haven't, and I know that they're all gonna be absolutely cracking up when they hear this. So, what do you do when your pyramid gets infected with Ransomware? You encrypt it. That's pretty good, right? That's pretty good.


Natalia Godyla:

I've got a new one. We're gonna try-


Nic Fillingham:

Okay.


Natalia Godyla:

... a new one.


Nic Fillingham:

I'm gonna try and laugh. Like, I'm gonna be in the right frame of mind for, if it is funny, I'm gonna try and laugh. You ready? (laughs)


Natalia Godyla:

I like that little "If it is funny." All right-


Nic Fillingham:

Well.


Natalia Godyla:

Why doesn't Superman fight cyber crime?


Nic Fillingham:

Why?


Natalia Godyla:

Because he's scared of cryptocurrency.


Nic Fillingham:

Oh, no, no, no, no, no, no, no, no. Okay, so it's a joke about. It's a jo, no, no we're gonna pull this one apart and we're gonna fix it.


Natalia Godyla:

Right. Right.


Nic Fillingham:

So it's a word play on cryptocurrency. So, it's gotta be something like, Superman's laptop, no that's not it. But we're gonna work on this.


Natalia Godyla:

Strong start.


Nic Fillingham:

If you're a, a dear listener of the podcast, if you think you can make this Superman joke work for us, let us not. Securityunlocked@microsoft.com or hit up on the Twitter's MSFD Security.


Natalia Godyla:

So do we wanna tell everyone about this week's episode?


Nic Fillingham:

(laughs) I, I guess we probably should. On today's episode, we speak to Peter Anaman who is gonna talk to us about business email compromise. This is the fourth of five conversations we're having on the podcast to cover content from the MDDR. Peter explains to us the difference between sort of general phishing in the consumer email space, and phishing and email compromise in sort of sort of business corporate world, and also what the attackers are doing once they do compromise a business email account. Make sure to follow along at home by downloading the Digital Defense Report aka.ms/whackdigitaldefense. And then after that, we speak with-


Natalia Godyla:

Scott Christiansen a senior program editor at Microsoft who as he says it "is the security conscience for our company". So, he does a lot of work on the software development lifecycle and ensuring that we are delivering secure code, that we're adhering to our policies and standards around what it means to have secure code. And, in addition to all of that, he's a professor so he talks to us about the cybersecurity program that he's part of and it's a great conversation.


Nic Fillingham:

It is. On with the pod.


Natalia Godyla:

On with the pod.


Nic Fillingham:

Peter Anaman welcome to the security unlock podcast. Thanks for joining us.


Peter Anaman:

Thank you for inviting me.


Nic Fillingham:

Well, we'd like to start the podcast off with getting our interviewees to give us a quick introduction to who they are. Obviously we'd love to know your title but more uh, interestingly is tell us about what you do uh, day to day. What's your, what's your job look like?


Peter Anaman:

So my name is Pierre or Peter Anaman and I work in the digital crimes unit in the Microsoft [inaudible 00:05:08] Organization, which is the legal group. And within this group I'm part of the Global Strategic Enforcement Team, and we currently are focusing on BEC or Business Email Compromise. As regard to my title, Cyber crime Investigator, so I focus on developing cases that we then either pursue with a civil lawsuit or, you know, or to identify the thread actors, or we develop cases that are then subject to a criminal refer to law enforcement where we believe the thread actors are located. So, that's what I do on my day to day basis. As far as looking at prints, looking at intelligence, dark web data to try and see how the criminal, online criminals are using different tools in order for us to try and be ready and up to date.


Nic Fillingham:

That's an amazing title. I'd love to have that on a business card.


Peter Anaman:

(laughs)


Nic Fillingham:

So is your background law enforcement? Are you a lawyer? This might be a very uh, broad question but how did you get to where you are?


Peter Anaman:

So I started off pursuing um, once I finished my high school I always wanted to be a lawyer, and so I pursued legal studies and went to law school in the UK. And when I finished law school I, I had a, uh, a passion for pursuing like legal, um, law enforcement related activities, and the law and police was one but I heard the army had a very stringent course in France, and so I pursued a full month uh, accelerated course to become an officer in the French Army. And uh, so, and thereafter I was a Lieutenant. I had to leave but always had a purs, um, a passion for enforcement and from there I ended up working in a law firm trying to combat online piracy as well as different types of cyber crimes.


Peter Anaman:

So, it, it included piracy but it was also, child sexual abuse material where you know, we uh, support the law enforcement where we can. And that just developed. And I developed skills. I did amass this in information security to learn some of the tools, how the internet works, and just learned what I needed to and was curious. I spoke with a lot of experts that they taught me so many things on the way. And now I ended up working in this amazing organization.


Nic Fillingham:

On today's episode in this discussion, we're talking once again about the, the Microsoft Digital Defense Report, the MDDR which came out uh, in September of, of this year of 2020. And Peter, you're here to talk to us about a section or, or part of the state of cyber crime which is called phishing and business email compromise. You, you contributed heavily to this report. Could you just sort of tee us up, if, if, if you've not heard about the MDDR, the Microsoft Digital Defense Report and you're sort of you know, interested in downloading it and learning more, tell is about this section of phishing and business email compromise. What, what's the scope of this section and what, what are you gonna learn in it?


Peter Anaman:

Phishing has been um, you know with a Ph for those who don't know, involves where, typically involves where people [inaudible 00:07:57] are sent emails to people, and once in the inbox entice you to click a link, you know to upgrade, update your password or something of that nature, increasingly is being related to themes like news, like Covid-19, or election related. And when you click the link you go to a site where they ask you for your credentials, and once they have your credentials then they in most cases, may have access to your account. Unless you've got two factor authentication or some other security measures.


Peter Anaman:

And so, this section what we try to deep dive, is try to explain the different types of cases that may fall in that, in that category of online crime. And what I mean by that is you see from the sections there's one on credential phishing, there's a second which is more based on BEC Business Email Compromise, sometimes called CEO Fraud and we can speak about it a bit later. And then there's a third category which is really a combination of first two where the thread actors use credential phishing and then lead to some kind of fraud, financial fraud.


Natalia Godyla:

So wha, what patterns are you seeing when it comes to credential phishing? How does this manifest in an attack? What would an example of credential phishing look like?


Peter Anaman:

So when you look at each of these sections, the three of them, I can provide a little bit more depth. And so, in the first instance, credential phishing, as I mentioned earlier, it would be when a person would receive and email claiming to be you know, security department or a, you know, some h, highly important thing that they have to do, and when the person clicks the link, they are then sent to a webpage which looks like the, the legitimate office 365 login page as an example. And when they enter their credentials, the source code of that webpage has a form and the form has instructions. And those instructions are, when someone clicks submit, collect information in the username and password, and send it to what we call a drop account. Right? It's like an email address that collects the information submitted on that page.


Peter Anaman:

Now, we know this because through our investigations, we analyze you know, a p, I think we're on about ten [inaudible 00:10:06], hundreds of thousands of URL's every day to determine if they are phishing or not. And so we have seen how the in, information submitted from the email and from that email, what they do in some instances, in credential phishing is that they know that some people, like researchers will submit dummy information. So what whey do is they do a, a check. Right? They take the credentials and try to impersonate someone sent connected to the account, using some con, uh, they call it an SMTP checker, it's a, as in to keep the protocol for sending email. And so they check the credential and it works, they know it's valid. If it's not valid, they get rid of it.


Peter Anaman:

And then, once it's valid, we have seen like literally in minutes, it can lead to what we call BEC and our [inaudible 00:10:51]. So that's credential phishing essentially. But boldly the three differently areas we're seeing these credentials being used, we see them being sold on the dark web for very little. Because then other people can use it to send spam for example, or unsolicited commercial emails. They could use it to look at the person's account and steal confidential information, or business email compromise. So, that's how credentials are used typically.


Peter Anaman:

We then move to BEC and CEO fraud. There it's uh, I think most of the time, some people like to use BEC to include phishing but it's really a different type of activity. And the reason they use business email and compromise, is that this activity is targ;eting companies. And the reason is, it's another way of stealing money from the bank, right so to speak. And what I mean by that is that they've realized, the criminals have realized that companies have processes in place. Right? So for example I wanna b, I wanna pay for a service. Well it goes to procurement, and it goes to accounts payable, and they make a, a payment.


Peter Anaman:

Well, understanding this kind of almost a supply chain, right? The criminals have realized that, s,


Peter Anaman:

If they can monitor for wire transfers or transactions, they can like take over that conversation and redirect the payment to a different account. And this is how it could work based on what we've seen. So, as I mentioned, you have credential, they then have access to your account. When they have access to your account, in most cases we see two things happen. One, they add a forwarding rule. So they add an inbox forward- forwarding rule which says if you receive an email and in the subject or the body, you see accounts payable, invoice, USD, EUR, so different keywords that are related to a transaction, forward it to this email account. In other cases, what they do is they say forward it to an RSS folder. So a folder in your account and so then they will access your account and that specific folder to get the email messages which makes it harder to identify who they are, right? Because if they have an email or someone accesses that email.


Peter Anaman:

So once they add the forwarding rule and messages are sent and they find an email about the payment due, what they do is they look at who are the parties and depending on who, who is the person receiving the money, they'll get rid of them on the chain and create a homoglyph domain name. A homoglyph, it's like the Egyptian times, right? Something that is made to look like. It impersonates another domain name. For example, an I becomes a one. Right, or O for Oscar becomes a zero. So it's a slight change. And what they do then is that they have to use the same name as the person who they've removed and they continue the conversation. And at some point they say, hey, my account has changed. Updated PDF, this is our new bank account.


Peter Anaman:

Well because the people on the chain have been part of the chain, they think is legitimate. And so they make changes to the payee, to the instructions. And then the money is moved to a different account. It's just terrible when you see how much money has been lost. And if you read all the reports, you know, it's in the billions of dollars that have been lost this way. And that's why BEC has become very, very important to tackle as a type of crime.


Peter Anaman:

Now the third category, we said was a combination. And the reason is that in BEC, the second category, there are cases where it's almost like a stakeout, right? They see a company because they go to a website like, uh, the city has to make public, all the RFPs, you know, orders that they have to do 'cause they have to be public. So they see who may be bidding for a contract. And then they'll impersonate that person and try and get access to the payments for that government contract as an example. So that doesn't use credential phishing, right? It's, they're just looking for public information in order to understand what relationships are and to take over a transaction. Fascinating stuff, you know. Someone could make a movie out of how these people operate.


Nic Fillingham:

And is BEC the sort of end goal for the phishes? So for example, is phishing in the consumer space, the harvesting of, of credentials then being used to launch and mount, uh, BEC attacks in order to actually make some money?


Peter Anaman:

So I think there is a way we can distinguish between consumer and enterprise phishing. So the difference between sort of a, a spray concept, which is for consumers, just try and get as many accounts compared to the enterprise, the business email compromise, where it's more targeted. And the difference is that when you create a new Hotmail or Outlook or Gmail account, the systems know it's new, right? When I say it's new, is that if you were to send me an email from outlook.com, right, I would know it was created yesterday. But if it started to send emails to like a lot of, 200 people is highly suspect. But if you were able to get a person who's had the account, like let's say for 10 years, right? Well maybe that's not a anomaly because the person has lots of friends. They have lots of contacts, right. The, it looks like a real person. And so it's more likely to go under the radar when it comes to detection. And those could be some of the benefits of using compromised consumer email accounts. Just one example, there are many others.


Peter Anaman:

On the enterprise side, what we've seen for example in some of the attacks, is that the people who are being targeted typically within the category, right? We see a lot of executives, for example, in the C-suite that'd be being targeted. We see a lot of people in the accounts department, which have been targeted. We see directors being targeted because these are people who can authorize payments. They're not looking to send an email to a person who cannot help them, unless maybe it's an executive assistant who then can give them access to the inbox of the C-suite.


Peter Anaman:

Now in my presentation, I've spoken at times of dark web and I think I'll just put a sentence behind that. You know, dark web is a word that is used often, but in this context, I'm just speaking about places where people sell, conduct activities associated with criminal activity. The web is divided into four categories from my lens. One is the surface web, which is indexed like through search engines. The second is called the deep web. Those are websites that are either password protected like an online forum, where you have to register an account before you get in or a dynamically created website. So for example, a new site where the content changes, changes on a regular basis. So that's a deep web, it's not index. One of the biggest parts.


Peter Anaman:

Then the dark web is really tall, right? That's where you need a specialized search engine, you have to use, go to dot onion websites and that's a different category, dark web. Then you have the vetted web. The vetted web are websites where in for you to get access you need to be vouched. Which means that another criminal has to say you're a bad guy, and or girl. And so then you will be able to access it. And it's a way for them to try and trust each other. But in my context-


Nic Fillingham:

It's the, it's the Twitter blue tick of, of the bad guys.


Peter Anaman:

Yes, they're trying, they're trying, they're trying. Uh, but [inaudible 00:18:17] all of them. So, you know, for, for what that matters.


Natalia Godyla:

One other section of the Microsoft Digital Defense Report that you had covered was the section on COVID-19 themed phishing learners. So can you talk a little bit about how these techniques for phishing and Business Email Compromise were leveraged during the time of the pandemic and are continuing to be levered?


Peter Anaman:

So one of the, one of the patterns or trends we've noticed is that often the criminals change their attack mechanisms or the way they send messages based on lures which are relevant to a group of people in a specific time. As an example, we saw the same with you see it with, uh, elections or sport games or something to do with a celebrity. In this case with COVID-19 at the beginning of the year, we started to see a change and he came from a specific and came in different people were doing it, but we saw it more naturally with one group. Where we were tracking them for mid-December on the activities they were conducting, phishing activities they were conducting. They were using for example, financial statements, or they were using bonuses or different lures about finance and then all of a sudden they changed and they started to use COVID-19 bonus as a lure where they would say, "Hey, click this link to find out about your club COVID-19 bonus."


Peter Anaman:

And so when people click the link, it was sent to an Office 365 login page, and they submitted their credentials. A lot of people submitted their credentials from the logs we've analyzed because they believe that it was something that was relevant for them at that time. And that was part of the lure. And after a few months they changed, we were able to technically counter what they were doing and they moved to a different method of attack. It's just using, using the time.


Peter Anaman:

We just recently saw it with elections, for example, the same thing, the US elections. And we saw there were, there were some groups who had modified how they presented the email to people in order to encourage them to click the link and lead them to a phishing page. So the COVID-19 lures are something that we've noticed. It's part of a broader theme related to, uh, societal events, which are criminal's trying to take advantage of to increase the possibility of people clicking a link, right? It has to be believable. And it has to be a sense of urgency.


Natalia Godyla:

Do you ever think we'll preempt the societal moments? So if there's some big moment happening, we can assume that a cyber crime would leverage that societal moment as a lure and so we could plan ahead?


Peter Anaman:

One thing which would be difficult is as a company, we have a wide array of customers and we want all our customers to show up the way they want to show up, you know, without having to try and be someone else and not authentic. And with that in mind, it really, and even a step further, these people, right? They work for different organizations and in different organizations, they have different cultures that they have different ways of working. If you look at, for example, a manufacturing company where maybe IT may not be at the forefront, what the way they interact with IT will be very different to if you went to a startup, a tech startup, where that's what they do most of the time, not manufacturing, right? And so when we have such a wide array of customers and we've got governments, right, we got governments from different countries, some like each other, some don't. We have banks, we've got, we have different types of customers and Microsoft, all of a sudden becomes the protector, right? Because criminals are targeting banks, but they're our customer. So they rely on our security as well.


Peter Anaman:

So when we go back and speak about lures and things, these are things that we have to as cyber-crime enforces, we have to understand it happens. And so as we build technical measures, we have to implement technical measures that are adjustable and can, can change based on patterns it's observing. So I think the way to attack it is always to have this kind of different measures that are working together and leverage artificial intelligence and machine learning models in order to help us distinguish between different types of criminal activity and protect our customers. If that makes sense.


Natalia Godyla:

And what is our guidance to customers on what they can be doing to help prevent against these attacks?


Peter Anaman:

One is always to have good policies in place within the company, right? So that all employees are aware about how to make sure the devices are up to date. Don't pick up a USB on the street and put it in, you know, uh, make sure internally there are policies on backups, make sure you've got an online and offline backup, right? So you have to have policies in place that help protect the organization. The second part is to work hand in hand with their technology providers, right? So for example, if you work with Office 365, make sure that we have something called a Secure Store, a Secure Score. that's Secure Score is based on experience. We can say, hey, maybe if you have, to have a better score put MFA, Multi-factor authentication. Some of your users allow forwarding, block it. [inaudible 00:23:40] make sure it's admin can only authorize forwarding, right? Or off. 2.0, make sure that, uh, consent has to be from the admin. So there's a secure store that it helped them really implement in a much more secure environment, which will be frictionless. Number three is to have regular tests


Peter Anaman:

... with any organization. So that, I mean, that could be part of the policy, but typically is not always. Where you have fishing simulations, which are taking place, right? So that you can start to e-, keep the education at the forefront because we're all very busy and sometimes we forget. And I think four is that we have to work, we have to look always to use technology to advance the way you work forward. And what I mean by that is that companies need to think about the digitalization of their work processes. And what I mean is, uh, I mean, this may be a little bit off, but investigating some ransomware cases.


Peter Anaman:

For example, recently we saw that part of the problem is that some customers have old infrastructure on-prem, for example. And so that is what is being attacked. And once they get into that, then they can pivot and move laterally elsewhere into the organization. So I think digital transformation is by looking at your processes overall, by saying, "Are there ways we can modernize in a way that creates a better security landscape?"


Nic Fillingham:

Well, thank you for your time today. Again, we were, we were talking about the Microsoft Digital Defense Report, which is available to download for free. We'll put the link in the show notes. Peter Anaman or Pierre Anaman, thank you so much for your time.


Peter Anaman:

Okay, thank you very much. Be safe.


Natalia Godyla:

And now let's meet an expert from the Microsoft Security team, to learn more about the diverse backgrounds and experiences of the humans creating AI and tech at Microsoft. Hello, everyone, and welcome back to another episode of Security Unlocked. Today, we are joined by Scott Christiansen, who is a Senior Security Program Manager at Microsoft, as well as a Professor at Bellevue University. Thank you for joining us, Scott.


Scott Christiansen:

Well, thanks for having me. I appreciate it.


Natalia Godyla:

I'm really looking forward to this conversation. So, so let's kick it off by just giving a little bit more context behind those two roles. Can you tell us what your day and, and night look like as a program manager and professor? What do you do? What does your team look like? What do you teach?


Scott Christiansen:

Yeah, absolutely. So let's start with Microsoft, that's the thing that takes the majority of my time. So (laughs) I work in our customer security and trust group. And, specifically within that, our security engineering group within customer security trust. And then, more specifically, I work in our data analytics and insights team. And our group, as a whole, our security engineering team, is responsible for ensuring the company meets the software development life cycle, operational security assurance, policies and requirements that we have. As for any shipping software that we have to ensure that what we're shipping out meets our own internal, um, security standards and our internal security rigor.


Scott Christiansen:

Which then is tied to plenty of different external security compliance objectives and things like that. So that's kind of a mouthful, but we help ensure that the company's delivering secure code is kind of the nutshell. Or as we like to say, we're kind of the security conscious for the company. We have security teams throughout the products and then throughout the organization. And we're the conscience that comes through and says, "Is everybody doing everything they can be doing? And are there areas where we could be doing better and, you know, how can we help in that space?"


Scott Christiansen:

And so what we started doing is we started pulling in all the bugs across the company. So we've got like 700 different Azure DevOps repositories where engineers are storing work items and working with. And they generate roughly about probably 50 to 60,000, uh, new work items every single month. And so we suck in all that data to one gigantic data warehouse and we perform kind of analytics on that. That's really branched out to kind of work streams that I very specifically work on. One, I've spoken a little bit externally about this, where there's a blog up on the Microsoft blog site. I've spoken at RSA this past year and it's kind of their machine learning work that we've done with security bug classification.


Scott Christiansen:

So we pulled in all of the security bugs to this one spot. We said... and some of them are labeled as security, some of them aren't. And we took a look at that and we said, "Well, are there any that aren't labeled as security that should be labeled as security?" So about four years ago, probably, we started a little hackathon project trying to answer that question. And, uh, it's been a small project kind of throughout time with that. But, ultimately, it turned into a product that we've put together where we built a machine learning system, uh, that accurately classifies, uh, these bugs and says, "Hey, this pool of bugs is security and this pool of bugs is non-security."


Scott Christiansen:

And then for the, the pool of bugs that it says it is security, it will, um, say, "Hey, yeah, these particular subset of those bugs are critical security bugs. These are important security bugs, or these are some other particular severity with that." And we've had just unbelievable accuracy with that. So that's one of the things that I work on. Yeah, so we've got that model built and we're in the process of really, uh, we've got it built. We've classified all this data that we have within the company, and now we're in the process of making that more operational, so the engineering teams can take advantage of it. And then, in turn, finding a way to take that and spend it externally, probably through GitHub.


Scott Christiansen:

Uh, that's kind of the target that we're looking at, but so external customers and just the security industry as a whole can kind of take advantage of this auto classification piece. I spend a portion of my day doing that. The other portion of my day is kind of around this, this compliance report and GitHub bot. A really incredible code analysis tool. Used to be called [inaudible 00:29:11]. And it does just a phenomenal job at finding software vulnerabilities. And it's our team's job to kind of get that deployed within the company. And right now with getting static analysis stuff rolled out i- is the biggest priority. So that's pretty much what I spend my day on.


Scott Christiansen:

And the evenings, like you had mentioned, I'm a master's level cybersecurity professor at Bellevue University, uh, specifically, in their online cybersecurity program. And there I teach a few different classes, but most specifically I teach their masters in, um, architecture and design.


Nic Fillingham:

Thanks for that intro, Scott, uh, oh gosh, I've, I've written down like four questions coming back to, I think, one of the first things you just talked about in your day job, if we can call it that, your Microsoft role, how do you use machine learning to classify whether a bug is security related or not?


Scott Christiansen:

It started as this, as this summer hackathon project, and it was just a few of us, myself, uh, one of my colleagues, Alok Kumar and one of our other colleagues, Naveen [Nurenja 00:30:09] sat down and said, "Hey, are we missing anything in this space?" And none of the three of us were, were data scientists by any means. Alok had a little bit more an understanding experience with some of the machine learning work. And so we sat down and we go, "Who are the big hot tents in July?" And I started chewing through this problem and I was an expert in the security space. And so I said, "Well, well, those guys were going through and they were looking to see if they could find a machine learning model that might kind of work to help us solve this problem."


Scott Christiansen:

I went through and I did manual sampling of the bugs to determine if there was actually an issue there or not. So we went through and took a couple thousand bucks that were taken as security and looked to see if we had any misclassified or misidentified bugs there. And then we took a bucket of the bugs that were not classified as security, like another 2000, 3000 random sampling of bugs. And said, "Are there any security bugs in that space that we're missing?" And so we found discrepancies in, in both spaces. And so clearly the things that aren't showing up on the security radar are potentially a problem. The, the good thing is there's a good side to this whole story is that engineers fix bugs regardless if they're security bugs or not.


Scott Christiansen:

So the stuff that we found that didn't necessarily show up as a security bug was still getting fixed and it was getting fixed within a, a good SLA. So that was good, the right thing was happening, but it wasn't necessarily maybe showing up on everybody's radar. And, more importantly, it wasn't necessarily showing up on a radar where a security assurance person can come say, "Hey, I see you doing some security work over here. Maybe I can give you a hand and I can help you out with that.2 And the, the same was true for the space where we saw all of these security bugs or things that were tagged as security bugs, but they weren't necessarily security related.


Scott Christiansen:

You know, engineers are wasting kind of these trimmed down SLA fixed times for these, you know, supposed security bugs that aren't there. And so we're spinning up all this excitement around, "Hey, oh, here's the, the security bugs that come in and you have to fix these things." But they're not actual security bugs, and so you're just kind of spinning your wheels on that and, and wasting available engineering effort. So we started building our own machine learning algorithm kind of around this. And we started kind of doing this manual assessment and said, "Okay, out of these bugs that are security, can we find clusters of bugs that are misclassified?"


Scott Christiansen:

And so, eventually, we did that and it took us a while, it took us a good probably year and a half to come up with, what we would say, was a really kind of gold standard training dataset. We had this big block of bugs, uh, roughly about 300,000 bugs that were classified as security and ahead with the right security severity. And we were confident in those classification numbers. And so that's what we used to then train the model. So as we're going through this, and we got about to that point, we said, "We really need data science expertise." We hired, uh, Mayana Pereira and she's our data scientist for the project. And she's absolutely fantastic.


Scott Christiansen:

She found error rates associated with the data and how flexible we could be as error information potentially got introduced to our training dataset. She's shifted the algorithms that we've used a couple of different times, and we are light years beyond where we were thanks to kind of her joining the team, uh, and joining the project. And so, yeah, it's been about a four year journey, probably.


Nic Fillingham:

So just to clarify this, so the machine learning model is simply looking at the title of the bug. It's not looking at like Reaper steps or any other data. It's just, what is the title of the bug?


Scott Christiansen:

Yup, yup, that's correct.


Natalia Godyla:

So the courses that you're teaching are around infrastructure and the work that you do and Microsoft is around software development. So how did you get into security? What have you done within the security space? What brought you to these particular domains within security?


Scott Christiansen:

So I used to actually live in Omaha. I'm not from there, originally from North Dakota, part of the small cluster of people that, that, in this world, that are from North Dakota. But I met my wife up there and we moved down to Omaha. I restarted kind of, kind of my education once I went to Omaha into computer science. I went to school there, I got a job, and eventually, I started working at an architecture engineering company. I say it's a small company, it was a 1200 person company, but it was, at the time, it was the fourth largest architecture engineering company in the, in the US. So it was decent sized.


Scott Christiansen:

Being a small company, you get hands-on with a lot of different things. And so I'm going to school, I'm working, I'm starting to run all the infrastructure components that, that we have within the company. And we've got like 13 different offices in the US. We started to expand internationally, so I got a lot of exposure in that space. As I'm going to school, I'm trying to figure out exactly what kind of discipline of IT I want to do. At that time, it wasn't necessarily development. I like the Microsoft products, I like server products, I like Linux products. It was really the, the infrastructure stuff. And so I started getting into networking, and then I kinda got bored with that.


Scott Christiansen:

And so then I kind of went to systems administration of Windows stuff. You know, that one was where I was thinking my focus was going to go. And then I kind of got bored of that. One of the unique things about Omaha is it has a really large, uh, department of defense presence down in Bellevue, Nebraska. They've got an air force space and they have strategic command that's down there too. And one of my professors happened to be a security person that worked at StratCom down at the base.


Scott Christiansen:

And he was really into security and he kind of taught us some security stuff. And I was like, "Whoa, this is kind of like the Jedi, Sith type of cool, you know, dark hacking. This was before like hacking was like super cool like it, like it is now. It was just kind of this thing, but it's was like, "Hey, you can get software to do things that the software developer didn't expect to do." I'm like, "This is kind of interesting. It's got like the prankster type of thing, right?" And you get this creative mind going and you start going, "I want to do security." So I'm working at the architecture business and I said, "Hey, I'd really like to shift my role into security."


Scott Christiansen:

So I started doing some security stuff for them, but it's not really necessarily a high target type of business when they said, "Hey, you know, if you're ever looking for something, we're looking for a lead in our incident response group." And, and so shortly thereafter, I moved over and I was the lead for the incident response team for, uh, TD Ameritrade for a number of years. And TD Ameritrade absolutely has targets, they have, not, uh, not only normal criminal targets, they've got nation


Scott Christiansen:

... state attackers and anybody that's looking to try and steal money an- and hack into large financial enterprises, so that was a really exciting job and we did a lot of really exciting, cool things there, and some neat stuff happened. And then one day, I, I got a call from our, uh, sort of VP of security engineering at the time and he said, "Hey, we really need some help over in the software assurance space." And so I moved over onto that team and wrapped up my dev and my code view chops, and started doing kind of code review and code analysis.


Scott Christiansen:

And, specifically around that time, we were getting into the mobile app space, and so that's where I really focused my effort, was the kind of mobile applications and ensuring we had security coding practices with that. And then, and then, eventually expanded to kind of, to, to the rest of the enterprise. So, I was working at TD Ameritrade during the day, and I was teaching the one location at night, and then teaching online in between that.


Scott Christiansen:

And then, I was writing some, uh, the local, um, security groups, too, like the OWASP Omaha, I was president of that for a little while. I was the president of Nebraska InfraGard for a little bit. So pretty active in there, and, uh, Microsoft reached out to, out to me, and said, "Hey, look. We've got this opportunity, and we'd like to talk to you about it." And it's Microsoft, right? So I'm not gonna say no. It's like, you know, some of the smartest people in the world working on these kind of world-changing problems.


Scott Christiansen:

And I came out, and I will say it took the third different position at Microsoft before I finally actually moved out to Redmond and started working for Microsoft full time. I had two different opportunities tha- that didn't work out. So anybody who's ever interested in working for Microsoft, don't give up. There's enough people here and enough opportunities, I'm sure the right opportunity exists out here for you. And, and clearly it was, because this was ... Eventually when I came out here to do this work, this was absolutely the right fit for my skillset, for the company, and it was this kind of perfect blend, and I, I wouldn't think of anything different beyond that.


Scott Christiansen:

I absolutely love what I do, and I'm now in a role where I have an opportunity to ... You know, I'm not just securing an enterprise or securing a company. I'm part of, uh, really changing a- around the world as a whole. So it's this really, kind of wonderful opportunity and wonderful role that, that I get to do and these kind of global changing types of things that we ... problem solving, I guess, that we get to work on within the company.


Natalia Godyla:

I love the context and I can absolutely vouch for your statement about Microsoft. I came to Microsoft after the second roll, um, so going inside Microsoft or having the inside out perspective, I now understand the sheer size of Microsoft and the fact that you just keep trying. If the right fit is there, it'll happen. But your story seems to really have started with a professor who highlighted security as an opportunity. So is there any connection between that professor and your desire to go into teaching? How did the professorship start?


Scott Christiansen:

Very good question. I was pretty active in the local Omaha security community with the different groups, and there was a guy named Ron Warner, and Ron's a good friend of mine, still is a good friend of mine, and he was very active in the community as a whole. And, around the time that Bellevue University was standing up their cybersecurity program, Ron was there, and he called me up, uh, he was standing up the program. He was the director of the program at the time.


Scott Christiansen:

And he said, "Hey, look. We're standing this thing up, and I know you've had some experience teaching at ITT Tech." And I started teaching at ITT Tech, 'cause I graduated with my master's degree. I was still, um, friends with some of the professors there, and they said, "Hey, you should come teach for us." And, interestingly enough, I decided to teach for one very specific reason. I wasn't a very cohesive public speaker, and it was a skillset that I really wanted to grow and develop, and I thought. "Wow. A, there's no way for me to be a better public speaker than to go up day and day in front of a group of people and try to deliver a message, and I'm not just talking about something at that point in time. I'm teaching them something, so they have to come away with knowledge after that."


Scott Christiansen:

So it was really like a self-growth thing in a space that I felt like I had some level of expertise. Over the course of time, I really started to, to, to develop kind of a rapport, and almost a character, like y- y- you'd put a hat on say, "Okay, this is, this is my teaching hat. This is what I'm gonna go do," and you deliver something that's interesting and engaging. And there was a personal growth component with that, because I'm this old guy by this time. I'm married and I've got kids. I don't have a lot of extracurricular time on my hands, but I have all of these students.


Scott Christiansen:

It was, uh, it was a scattering of, of male and female students. So I could start to take new ideas and present them as seeds to the students. So like, "Hey, I wonder if you did this," or, "There is an interesting security tool. Do you think you could do this with it?" And I could pique their interest and they go out, and the next week they came back and they're like, "Hey, look at this thing that I did." And so then we all got to learn together with them. That was really, really personally rewarding to be able to do that, to help people learn, but also to see the feedback and me, individually, grow from the knowledge that they were presenting back to myself and back to the class, too. So it was really incredible.


Scott Christiansen:

And security is hard. It's not an easy discipline. It's not an easy space. It covers the gamut of everything. If you think about security kinda holistically that, you have all these engineers building all of this technology to do thing, security is trying to understand what they did and figure out where they went wrong. So, I don't have to get a lot of people excited about security anymore. They're already excited, 'cause they've started the program. There's definitely some level setting that you have to do, and let them understand kind of what the space looks like, versus what they think it's gonna look like.


Scott Christiansen:

Everybody think they're gonna come in and they're gonna be a pin tester and they're gonna make millions of dollars and find all these vulnerabilities, and that might be the case for some people. I mean, there's bug bounty programs out there, where people are making significant amounts of money. But there's a space than that, and that's a very specific subset of everything that you can do in security. There's a lotta opportunities for lots of other people to do lots of different things. So I'd like to help do that, too.


Scott Christiansen:

But more importantly, I'd like to help the students understand how to properly secure things. There's a lot of misinformation kind of in that space, or people have misguided expectations on how to secure specific things. There's a definitely a right way to r- to do things and a wrong way to do things, and so that's one of the things that I feel I probably contribute the most is saying, "Here's a right way to do this." But sometimes, if you have some knowledge or, or you have that background already, i- the online experience can be very successful for you, or if you're just really good at ... you don't mind asking questions.


Nic Fillingham:

I love that you said if you find yourself not succeeding in an in-person environment, go check out online and see if that's the right thing for you, and, and the inverse. That's fantastic advice. Well, Scott, is there anything you wanted to plug or, uh, point people to before we let you go? Any sort of resources, blogs, communities you like?


Scott Christiansen:

Besides assessing that the machine learning model is the right tool, or the machine learning that we built right now is the right tool for external customers, we're doing a lot of our own, individual assessment. You know, Microsoft has gone down this awesome path of responsible AI and ethical AI. So, wh- We're no different to that process. In addition to seeing how well the model does within this outside Microsoft, we're also running it through the gamut.


Scott Christiansen:

So we've taken it through, um, our legal resources to say, "Here's our model." You know, "If we were to release this thing tomorrow externally, would you be okay with it? Here's the data that we used. Here's the data owners that own the data that we're using. Do you think it's okay with them that we've built this model and it does these things?" We've got security teams now within the company that do, uh, this responsible AI and security AI work, and we've talked to them through the risks associated potentially with our model and, and what the model could do.


Scott Christiansen:

That whole security AI space is really new, so it's interesting for a security team to come out with this security classification model and then kind of go through all those reviews. We're in the process of starting to work with some security AI pen testers now within the company, so people that in their specific skillset is attacking these AI and, and ML models and finding vulnerabilities and flaws kind of associated with that. So we're engaging with them, uh, to do that.


Scott Christiansen:

So we're doing a lot of different work kind of with that. And, again, that's all because we've trained this model on a non-public data set. So, if we expose the model externally, we wanna make sure that it's not gonna expose any of this non-public information to the rest of the world. If all this turns out and it fails, so far, it looks like it's not, but if it does, then, you know, being a responsible engineer in this space, we have to go get public data to do this.


Scott Christiansen:

And if we trained it with public data, that would be fine, but it's taken us three years to kind of get to this particular point to build up this kind of reference data set. It's gonna take that long externally. And so what we wanna do is try and see if what we have is, is good enough to put out there, but, uh, do it in absolutely the most responsible way for Microsoft and our engineers and our customers that we possibly can. So if there's any plug, i- it is that plug and that responsible AI is super, super important, and we're doing our best to kind of adhere to those goals.


Nic Fillingham:

Well, Scott Christiansen, thank you so much for being on Security Unlocked.


Scott Christiansen:

Yeah, absolutely. Thank you so much for having me. I ... Uh, it was really rewarding. I really appreciate it.


Natalia Godyla:

Well, we had a great time unlocking insights into security from research to artificial intelligence. Keep an eye out for our next episode.


Nic Fillingham:

And don't forget to tweet us at MSFTsecurity or email us at securityunlocked at Microsoft.com with topics you'd like to hear on a future episode. Until then, stay safe.


Natalia Godyla:

Stay secure.

More Episodes

4/7/2021

The Language of Cybercrime

Ep. 22
How many languages do you speak?The average person only speaks oneor twolanguages, and for most people that’s plentybecause even as communities arebecoming more global, languages are still very much tied to geographic boundaries.Butwhat happens when you go on the internet where those regions don’t exist the same way they do in real life?Because the internet connects people from every corner of the world, cybercriminals canperpetratescamsin countriesthousands of miles away. So how doorganizationslike Microsoft’s Digital Crime Unit combatcybercrimewhen they don’t even speak the language of the perpetrators?On today’s episode ofSecurity Unlocked, hostsNic FillinghamandNataliaGodylasit down withPeterAnaman,Principal Investigator on the Digital Crimes Unit,to discusshowPeterlooks at digital crimes inavery interconnected world and how language and culture play into the crimes being committed, who’s behind them, and how to stop them.In This Episode, You Will Learn:• Some of the tools the Digital Crime Unit at Microsoft uses to catch criminals.• How language and culturalfactors into cyber crime• Whycyber crimehas been onthe rise since Covid beganSome Questions We Ask:• How has understanding a specific culture helped crack a case?• How does a lawyer who served as an officer in the French Army wind up working at Microsoft?• Are there best practices for content creators to stay safe fromcyber crime?ResourcesPeterAnaman’s LinkedIn:https://www.linkedin.com/in/anamanp/NicFillingham’s LinkedIn:https://www.linkedin.com/in/nicfill/NataliaGodyla’s LinkedIn:https://www.linkedin.com/in/nataliagodyla/Microsoft Security Bloghttps://www.microsoft.com/security/blog/Transcript[Full transcript can be found at https://aka.ms/SecurityUnlockedEp22]Nic:(music)Nic:Hello and welcome to Security Unlocked. A new podcast from Microsoft where we unlock insights from the latest in news and research from across Microsoft's Security Engineering and Operations Teams. I'm Nic Fillingham.Natalia:And I'm Natalia Godyla. In each episode, we'll discuss the latest stories from Microsoft's Security. Deep dive into the newest threat intel, research and data science.Nic:And profile some of the fascinating people working on artificial intelligence in Microsoft Security.Natalia:And now, let's unlock the pod.Natalia:Hello, Nic. How is it going?Nic:Hello, Natalia. I'm very well, thank you. I'm very excited for today's episode. We talk with Peter Anaman, who is a return guest. Uh, he was on an earlier episode where we talked about business email compromise and some of the findings in the 2020 Microsoft Digital Defense Report. And Peter had such great stories that he shared with us in that conversation, that we thought let's bring him back. And let's, let's get the full picture. And wow, did we cover some topics in this conversation. I don't even know where to begin. How would, what's your TLDR for this one, Natalia?Natalia:Well, whenever your friends or family think about cyber security, this is it. One of the stories that really stuck out to me is, Peter went undercover, and has actually gone undercover multiple times, but in this one instance he used the cultural context from his family history, as well as the languages that he knows to gain trust with a bad actor group and catch them out. It's incredible. He speaks so many languages and he told so many stories about how he applies that to his day-to-day work in such interesting ways.Nic:Yeah, I love, for those of you who listened to the podcast, Peter really illustrates how knowledge of multiple cultures, knowledge of multiple languages, understanding how those cultures and languages can sort of intersect and ebb and flow. Peter has used that as powerful tools in his career. I think it's fascinating to hear those examples. Other listeners of the podcast who, who do have more than one language, who do understand and have experience across multiple cultures, maybe oughta see some, uh, some interesting opportunities for themselves in, in, in cyber security maybe moving forward.Nic:I also thought it was fascinating to hear Peter talk about working to try and get funds and sort of treasures and I think gold, l-literal gold that was taken during the second world war. And getting them back to it's original owner. Sort of like, a repatriation effort. As you say, Natalia, these are all things that I think our friends and family think of when they hear the words cyber security. Oh, I'm in cyber security. I'm an investigator in cyber security. And they have this sort of, visions, these Hollywood visions. Nic:This is, that's Peter. That's what he's done. And he's, he talk about it in his episode. It's a great episode.Natalia:And with that, on with the pod.Nic:On with the pod. Nic:(music)Natalia:Welcome back to Security Unlocked, Peter Anaman.Peter:Thank you very much. Thanks for having me back.Natalia:Well, it was a pleasure to talk to you, first time around. So I'm really excited for the second conversation. And in this conversation we really love to chat about your career in cyber security. How you got here? Um, what you're doing? So let's kick it off with a little bit of a refresher for the audience.Natalia:What do you do at Microsoft and what does your day-to-day look like?Peter:So in Microsoft, I work within the legal department. Within a group called the Digital Crimes Unit. We are a team of lawyers, investigators and analysts who look at protecting our customers and our online services from, um, organized crime or attacks against the system. And so we, we bring, for example, civil and criminal referrals in order to do that action. On a day-by-day basis, it's very, very varied. I focus more on business email compromise present with some, with some assistance on ransomware attacks and looking at the depths and the affiliates there. As well as looking at some attacks against the infrastructure based on automated systems. Peter:So it's kind of varied. So on a day, I could, for example, be running some crystal queries or some specialized database queries in order to look for patterns in unauthorized or illegal activity taking place in order to quickly protect our customers. At the same time, I have to prepare reports. So there's a lot of report writing just to make sure that we can articulate the evidence that we have. And to ensure we respect privacy and all the other rules, you know, when we present the data.Peter:And also, in addition to that, uh, big part of it is actually learning. So I take my time to look at trends of what's going on. Learn new skills in order to know that I can adapt and automate some of the processes I do.Nic:Peter, as someone with an accent, uh, I'm always intrigued by other people's accents. May I inquire as to your accent, sir. Um, I'm hearing, I think I'm hearing like, British. I'm hearing French. There's other things there.Peter:(laughs)Nic:Would you elaborate for us?Peter:Yes, of course. Of course. Oh so, I was born in Ghana, West Africa and spent my youth there. And later on went to the UK where I learned that, I had to have elocution lessons to speak like the queen. And so I had lesson and my accent became British. So but at the same time, I'm actually a French national. Um, I've been in the French army as an officer. And so, that's where the French part is. And throughout, I've lived in different countries doing for work. Uh, so I've learned a bit of German, a bit of Spanish on the way.Nic:I, I actually cheated. I looked at your, um, LinkedIn profile and I see you have six languages listed.Peter:Yes.Nic:The two, the two that you didn't mention, I am embarrassingly ignorant of Fante? And T-Twi, Twi? What are they?Peter:Twi and Fante are two of the languages that are spoken in Ghana. They're local languages. And so growing up, I always had that around me. When I went to my father's village where his, we communicate in that language. English is kind of the National Language but within the country, people really speak their own languages. So I've ticked it off now. Can I speak fluently in, in it? No, I've been away for too long. But if you put me there, I would understand everything they're saying. Nic:What are the roots of those two languages? Are they related at all? Or are they completely separate?Peter:They are related but one, one person cannot always understand the other. If you look more broadly, you look at for example, the African continent all are, you'll find that there are over, from what we understand, over, what was it? 2,000 languages are spoken on the continent. So sometimes a person, say on the east coast doesn't understand the person in the west coast, you know. And, and it's fascinating because, you know, when we look at cyber crime, we are facing a global environment. Which is actually pretty carved out, right? The physical world is still pretty segmented.Peter:And so when, for example, investigating some crimes taking place in Nigeria, well they speak pidgin English. And so we have to try and adapt to that to understand, what do they really mean when they say, X or Y? And so, you know, it kind of opens our mind at, as we're doing the investigations. So we have to really try and understand the local reality because the internet is not just one place. And I think, you know, working for, you know, Microsoft and with such an amazing diverse team, we've been able to share knowledge.Peter:So for example, in the case I mentioned, I went to my colleague in Lagos, Abuja. He went, oh, that's what it means. And we're like, okay great. That one makes a lot more sense. And so we can move on. So we have this kind of richness in the team that allows us to lean on each other and, you know, sort of drive impact. But yeah, language is very important. (laughs)Natalia:I was gonna ask, do you have any interesting examples in which the culture was really important to cracking in the case or understanding a specific part of a case that you were working?Peter:Yes. So there was one case I worked on earlier on which was in Lithuania. And in Lithuania, for a very long time, this group had been under investigation but they were very good at their Op Sec and used some, uh, different types of encryption and obsolete, obsolete communication to hide themselves. But what I learned from the chats and when I was, this was in an IRC, it started in IRC channels and then moved out of there afterwards. But I noticed that there was a lot of Italy. There was a lot of Italian references. And my grandfather was Sicilian so I've spent time in Italy. So I kind of understood that they traveled to Italy.Peter:So in part of the persona, I made reference to Sicily. And I just said, you know, that's where my grandfather's from. And this, didn't give a name obviously, but it kind of brought them closer, right? Because like, oh, yeah we, we get it. And after about two, three months, I was able to get them to send me pictures of them going on vacation in Italy. And unfortunately for them, the picture had geo-location on it. And also, we were able to blow it up to get the background of where they were in the airport and using the camera from the airport, we were able to identify who they were. And then go back to the passport, find their path and they got arrested a few weeks later. Peter:So but to get that picture, to get that inner information required a kind of, trust that was being built in the virtual world and that comes from trying to understand the culture. By teasing out, asking questions about who are you and what do you like. So that's just one example.Nic:N-no pressure in answering this question and we'll even, we'll even cut it out of the edit if it's one you don't wanna go with.Peter:(laughs) Sure.Nic:If you're good with it. But um, uh, I heard you now talk about personas and identities and y-you just sort of hinted at it in the answer to the previous question. It sounds like some of the work that you have done in the past has been about creating and adopting personas in order to go and learn more information about bad actors and groups out there in, uh, in cyber land. Is that accurate and are you able to talk about what that role and that sort of, that work look like, when you're performing it?Peter:Yeah. So before you have Peter:...persona, you have to understand where that persona's gonna be acted, right?Peter:And I'll give you an, an example of a story. Once I had to go to LA to give a presentation and when I got to the airport I got a cab. And in the cab I looked at the guy's, the license plate of the, of the person. And I said, I bet you, I can guess, which country you were born in. He was like, an African American kind of person. He goes, impossible. No one has guessed it, you will never know. I was, all right. Are you ready? You're from Ghana. And his mind was blown. He was like, how, how did you pin that to one country? I was like, well, in your name, you have Kwesi. And I know if you're born in a country, in Ghana and have Kwesi, it means you're born on a Sunday. So that fact that you have your, that name there, that means you were born from Ghana. He goes, you are right. And so that was that. Peter:And I said, I miss some food, the cuisine from my, from, from Ghana. And he goes, oh, I know a great place. It's in Compton. I said, go. Uh, when? So I went into my restroom, showered, go ready, try to g-got into a taxi and he goes, I'm not going into Compton. I was like, well, why not? I wanna go to that restaurant. And he goes, oh, no, no, no. I'm going to get robbed or something bad is going to happen to me. I was like, but it- By the way, he left, he went, I had a great meal. Afterwards, I spent two hours in the restaurant 'cause no taxi would come and pick me up. And eventually, the waitress took me to a local casino. And I got a cab there and I got back.Peter:Where, where I'm going with this story is about the environment. I didn't know what Compton meant, right? So if I created a persona that went there that didn't know the environment, they would not succeed. They would stick out like a sore thumb. They would, they would fail. So the first idea, is always to understand what are the different protocols.Peter:If I'm looking at, for example, FTP or IRC, the different peer-to-peer networks. Or I'm looking at NNTP and the old internet, you know. All of those work, you need different tools to work there. Different ways to collect evidence and different breadcrumbs you could leave that you need to know it may be needed. Because when you're there, you're there, right? And it's, you're leaving, you're leaving a mark. Also some people say, use proxies. Well, the problem with proxies that someone could know you got a proxy on. Because well, there's lots of systems out there. So it's about using the system. Understanding how it's interconnected so that when you show up, you show up without too much suspicion.Peter:The other thing I learned is that the personas have to, have to be kind of, sad. 'Cause what I found is that when they were a bit sad, like, I'm happy with your work and things like that. What I found, that's me, right? I found that people were more interested because people are kind by nature, right? And so when they see that you're sad, they're more likely to communicate with you. While, while if you're too confident, I can do everything. They're like, uh, no, that person. Peter:So I try to like, psychologically look at ways to make the person as real as possible, based on my experience, right, because if it was based on me, I would be called out. Because I will be inventing a character that's, was not real. If you try to give me a trick question, because it's based on me, the answer's gonna be the same. I've got, the persona is me. It's just different. And so that's how I took my time to understand it. I spend a lot of time learning the internet, the protocols, you know, how does P2P actually work. When I, going to an IRC channel or when I'm looking at the peer-to-peer network and looking at the net flow. So the data which is passing from my computer upload. What other information is flowing. Peter:Because if I can see it, they can see it, right? And at the same time I have to have the tools. So I was very fortunate to have, for example, some tools that can switch my IP address with any country, like, every minute. So I could really change personas and change location really rapidly and no one would know better 'cause I'm using different personas in different contexts, right?Peter:Now, I never lie. One of, one of the clear things is that you never, I never try and do anything illegal because I have to assume that law enforcement is on the other side. And that's not what I'm trying to do. So I'm not gonna commit the crime. I'm not going to encourage you to do the crime. I'm just listening and just being curious about you. But then people make mistakes because they share, they over share sometimes without knowing. Maybe they're too tired or something. Natalia:I have a bit of a strange question. So with the lockdown, culturally, people are expressing publicly that they feel like they're over sharing. Because they're all locked indoors. They have, their only outlet is to share online. So have you noticed that in your work in security? Do, are people over sharing in that underground world as well? Or there, there hasn't been an equal shift?Peter:No, I, I, I, actually think it's getting worse. Um, and part of the reason is, as more people go online, they're speaking more about how to be anonymous. So for example, I've seen a rapid increase in BackConnect. These are residential IP addresses used as proxies. Well 'cause now they're communicating to each other, saying, hey, we're all online and this is how you can get found out. And so there actually there's more sharing going on. You know, I look at this, many more VPN services out there. It just seems, they're better prepared. Now, obviously, we see a lot more, right? So I'm definitely seeing more sophistication because people are spending more time online. So they, they're not walking around waiting for the bus. They're reading, they're learning, they're adapting. They communicate with each other. Peter:I've even found like, cyber crime as a service, we've found clusters of groups of people. And when you look at that network, you could see. They're saying, oh, I offer phishing pages or I offer VPN. They become specialized. So now you have people that are saying, I am just gonna focus on getting your, for example, some exploits. Or I'm just gonna focus on getting you, um, some red team work so that you can go and drop your ransomware. You know what, they, they've become more specialized actually because they're online. And they've got the time to learn.Nic:Peter, you mentioned earlier, some time you spent in, I think, was it the French army, is that correct?Peter:Yes, that's correct.Nic:Do you want to talk about that? Was that your foray into security? Did it, did it begin with your career in the army? Or did it begin before then?Peter:Hmm. I think it started probably before then. In a sense that, once I left high school, I decided I wanted to study law. Because I wanted the system that I was gonna be working in. And so I went to law school, uh, in the UK. And when I came out, unfortunately, the market was not as good. So I couldn't get a job. And when I looked around at what other trenches I had. I found there was an accelerated cause to become an officer in the French Army. It's a bit like, West Point in the US. Or, and so to do that, it was basically two years, it a two year program condensed into four months. It was hard. And so (laughs) I-Nic:It was what? No sleep? Is that what it was? (laughs)Peter:Ahhh. I've lived through little sleep.Nic:No sleep before meals.Peter:Yeah. I had to, you know, even- Well one time, I even had to evacuated because I got hyperten- you know, uh, hypothermia. (laughs) It was, uh, sort of a character build, character builder, I like to call it that. Uh, but really I think that started the path. Uh, but for the security side was, was after that. So, 'cause of my debts from law school, I, I left the army and I went to, back to the UK. And there, the first job I found was to be a paralegal, photocopying accounts, bank accounts opened between 1933 and 1947. It was part of something called a survey. And it actually had something to do with the Nazi gold.Peter:So what happened is that during the second world war, a lot of peop- uh, people of Jewish origin, saw that they were gonna be persecuted and took their money to, uh, Switzerland and put them in numbered accounts. And kept the number in their head. While unfortunately, so many of them sadly, uh, were victimized, they died. And the number died with them. Well, the money stayed in the accounts and over time because the accounts were dormant, well, you had charges. And so the money left. Peter:And so this was something that Paul Volcker, I believe it was, started the survey to get the Swiss banks to comply and give the money back to the families as result. So I was part of a team investigating one of the banks there. And although I started photocopying, I looked at, using my military skills, to be very efficient. So I was the best photocopier.Natalia:(laughs)Peter:And uh, and we were five levels underground. And that's what I did and I worked hard. And then after a few weeks, I got promoted to manage, uh, photocopiers. The people photocopying. We were a great team. And after that, they realized I was still hanging around because everyone was sleeping. 'Cause working five levels underground is a bit depressing sometimes. Peter:And so eventually, I became a data analyst. And so now I had to do the research on the accounts to try and find someone writing in pen, oh, this number is related to this other main account. Or this there piece of evidence is linked to this name. And so basically, for about, I think about three years, I basically, I eventually ran the French team and we looked at all the French cards opened from that period. And that started the investigations and sort of, trying to think deeper into evidence and how to make it work. Natalia:I really didn't think of myself as being cool before this, but I'm definitely not cool after hearing this. It's been validated, these stories are way beyond me. Peter:(laughs) Well, no. Just stories.Natalia:(laughs) So what brought you to Microsoft? That how did you go from piracy investigation to working at Microsoft as an investigator?Peter:So what took place was actually, my troubles created by Microsoft. So back in 2000 it was Microsoft who actually saw that the internet was becoming something that could really hurt internet commerce and e-commerce of role and wanted to make sure Peter:But they could contribute to it, and participate by building this capacity. And all the way through, they were one of my clients, at, essentially. And at some point, I realized that in my career, working for different customers, clients is great, because you learn, you don't have something different. So, for example, a software company is very different to a games company. Is different to a publishing company, is different to a mo- motion picture company, although it's digital piracy, it's actually very different in many respects. And I have- I saw how Microsoft was investing more in the cloud at that time, and I saw that as a big opportunity to really help a bigger threat to the system, right? Peter:And when I say to the system, E-commerce, 'cause everything was booming, this was in like 2008. And so, I decided that I would work for them. And actually, they offered me the job. So, I- I didn't, you know, I'm very privileged to be where I am now. But the, the, the way they positioned it is that they were looking for someone to help develop systems to map out, create a heat map of online piracy. I was like, "Wow, this is a global effort." So, uh, that's what I came on board with. And I built actually, a, a system similar to Minority Report, whereby I got basically these crawlers that I built that would go out and visit all these pirate sites. And you'll find this fascinating 'cause... Well, I found it fascinating, in some cases- Natalia:(laughs). Peter:... as we accessed the forums that we're offering, you know, download sale, RapidShare was one of the companies at the time, as we shut them down, they have crawlers in the forum, which will go and replace them. So, we had machine or machine wars, where we would shut down a URL, and then they would put another one. The problem is that our system was infinite. That is, we can, the machine can keep clicking. For them, they had about 10 groups of files. And so once they reached number 10, that was it. So, I found a way to automate the systems. And then after that using the, the Kinect, do you remember the Xbox Kinect? Nic:Cer- certainly. Peter:Managed to hack that, and the way it happened is that I built a map on Bing, whereby the Kinect could look in my body structure. And as I moved my hand, it would drill in to a country. And when I pushed, it would create, like, a, a table on the window with the number of infringements, what products were offered, when was the last time it was detected. And then, I could just wave it away and it would go, and then I could spin the world, it was a 3D map to go to another country and say, "What are the concentrations of piracy?" In this way, we had a visualized way of looking at crime as they were taking place online, and then zoom in and say, "We need to spend more effort here." Right? Peter:So, as well, just getting data analytics, but in a 3D format. And so, that was part of the excitement when I joined, is how to do that. Another example is, I found that, I read some research where it said that basically humans only spend a minute and a half on any search query. You know, in itself it doesn't mean much. But imagine you have a timer and it's one second, two seconds, three seconds, right? You're waiting for a minute and a half, right? So, 90 seconds, let's double that and say 180 seconds. Basically, let's say three minutes, it means that if you go to anyone you know, and ask them, "Go and search for Britney Spears downloads." And you look too, go, do, do the search, and they will click a link, nothing. Go next, click next, and they'll keep going. Peter:Before the three minute mark, they'll stop. They'll change the query, they'll do something different. Because they wouldn't get a result. Which means that when you do a search, and a search has got a million results, uh, it doesn't really matter. People are not going to go through the million. So, I started to think about the problems that when executives and people were saying, "Oh, I go on the internet, and I can find bad stuff." I was like, "Okay, but you can do like in three minutes. How about I build a robot that will pretend to be you, and go and find the infringements within that three minute window? Which is about 400 URLs. But I'm going to hit it with like send 100 queries, distributed." Peter:All of a sudden, we were finding the infringements before anyone could click on it, because we would report it to Google, Bing, Yandex, Baidu. And they would remove it from the, from the search results. And then, we had a measurement system, which would check and see, if I was a human, how many seconds would it take before I found an active download? Right? You could automate it. And so, we had a dashboard that could show that, and it worked. You know, we could, we saw a decline in the number of complaints because, well, it wasn't as visible. Now, if you knew where the pirate bay was, yeah, okay. But that wasn't really what we were doing. We were looking at protecting people from getting downloads which contain malware, or something nefarious, right? And, and, so we built these systems to protect consumers, essentially.Natalia:So, is there a connection, or maybe a community behind the work that you've done in piracy and the world of copyright? Uh, any, any best practices that are shared with content creators who are equally concerned with a malware being in their content, or just the sheer, the sheer fact that someone is pirating their content?Peter:I think from a contents per- perspective, and there are several amazing organizations out there, such as the BSA, Business Software Alliance, you have the MPAA, you know, you have the RIAA, and also IACC, the International Anti-Counterfeiting Coalition. Who have just incredible guidance for their members, which are specialized. So, for example, when you look at counterfeit goods, that's a very different thing to like, say, video, because video is distributed in a diff- different way. But one thing, which I think is important is that you don't just leave your, your house open, you lock it with a key, otherwise, someone will just come in and take your stuff. Peter:So, I think the same with contents, that when we create content, we have to find a way to work not only with different organizations that are looking to protect those rights, but also assume your own responsibility of locking your door. For example, what security could you put on it? Right? To maintain it? And how could you work with law enforcement who are there to protect the law, right? There are, I think there are different things that could be considered but most of it really, I would say the best is to start with the industry association, because they are much more specialized, and can give better advice, depending on the nature of the content that the person has. Peter:But, you know, when we were looking at online piracy, it wasn't just online piracy, because, you know, Microsoft participated in something called Operation Pangea. This was an Interpol driven operation where we found that a Russian organization that was distributing software for download in the millions of dollars, we took action to dismantle their payment mechanism. So, Visa and MasterCard would stop the payment on their website. So, they moved to prescription drugs, and they started selling prescription drugs. And so, for certain, it's really not in Microsoft's mandate to do that, right? Peter:But what we did is that we provided the expertise, and the knowledge we have to law enforcement to detect these websites. There were about 10,000 of them, and then drill down to say, "What's the payment gateway?" Because that's a choke point, you know, a criminal, definitely does what he does for the money. You know, you're not gonna rob a bank if there's no money there, right? So, with that in mind, they were able to do really, massively disrupt this organization. And that's because Microsoft looks at providing its expertise, and also learning from other people's expertise, right? But to tackle this bigger problem that impacts all of us.Nic:Peter, I'd love to circle back to language for a sec here. And when you were talking about the languages that you speak, and, and the importance of understanding culture. From your perspective, do you think there are countries, language groups, ethnic groups that are disproportionately... Well, I'm trying to think of the most elegant way to say, not protected or not protected as well as they could because they speak a language that is, you know, not as prevalent? So, you know, I looked at, you know, I'd never heard of the two, the two, uh, Ghanaian languages that you had on your- Peter:Mm-hmm (affirmative). Nic:... on your profile there, I'm not even gonna say them right, but Fante and- Peter:(laughs), so, it's Fante and Twi. Nic:Fante and Twi. So- Peter:Perfect. Nic:... native Fante, and Twi, I'm, I'm assuming there's, there's hundreds of thousands, maybe even millions of speakers of those- Peter:Yeah. Yes, absolutely.Nic:... two languages?Peter:Yes, yeah. Nic:Do AI and ML systems allow for supporting people that, you know, either don't speak English, or a sort of major international language?Peter:You're touching on something, which is very near and dear to me, 'cause it's a whole different conversation. And if you look at the history of language, there's, a, a great group of seminars written about it. It's actually I think, I believe, somewhere, I read somewhere that 60% of languages are actually not written. Right? And yes, you can go and see Microsoft has, translates between say, 60 or 100 pairs of languages, and Google the same. But what about the others? What about the thousands of others, that I think there are over 6,000 languages in the world. You're right. I mean, earlier this year, if I may be personal, I'm trying to adopt a baby girl. And so, I went to Ghana to try and manage the situation, which is very slow. Peter:And when I was there, I just saw the reality that, you know, they don't have access to resources, right? Because a book costs money. And so even for AI, how would they even know what AI is? So, I think there is an increasing gap, which is taking place. We can't keep build, building bigger walls, because it's just not going to work. We gotta be, we gotta think bigger than that. And so, one of the ideas is that when we look at some of the criminals, like I've had quite a few of them, a lot of them go to the same technical universities, for example, in West Africa. Well, why is that? It's cause I think they develop skills, and then they leave, and they can't get a job. And so, they end up being pulled into a life of cybercrime. So, culture Peter:It's I think becoming an important thing is that, there is a bigger and bigger divide 'cause not as many people have access to the resources, and how can we as a community who do have access, sort of proactively contribute to that? 'Cause we can't, there's no way you can, you know, just Nigeria has 190 million people. That's a lot of people, that's a lot people. The African continent has 1.2 billion. Asia, four billion, was like, um, I think it's like, is it two, three billion? No, two billion? Something like that but it's a lot people- Nic:It's a lot. Peter:... outside, right? (laughs). And so I think, I'm glad you brought that up 'cause I think it's a- an interesting conversation that we need to develop even, even more. Natalia:So, just trying to distill some of that down. So, are, are you saying then that, uh, at least when we're looking at language, there is a greater diversity of threat actors than there are targets? That those targets are centralized more around English speakers, but because of disproportionate opportunities in other parts of the world, we see threat actors across a number of different languages, across a number of different cultures? Peter:Yes. I, I think that's, that's a goo- uh, kind of a good summary of that, but I'll probably take it a step further and say, from my vantage point, again, you know, there are many other more brilliant people out there than me, I can only speak of what I've seen. I still find there are concentrations, right? When you look at business email compromise, and you go and pick up a newspaper and say, "Show me all articles about BEC, the biggest crime right now in the world, and show me all the people who've been arrested." Guess what? They're all from one place, West Africa. Why? Because if you look at the history of that crime, BEC, it was a ruse. Before that it used to be called, it was all under the category of Advanced E-fraud, but it used to be a lottery scam. Oh, the Bill and Melinda Gates lottery, you've won $25 million, or, uh, the Nigerian prince, right?Peter:Some people call 419 which is a criminal code in Nigeria. And then it went further back, they used to send faxes. Or, a lot of people developed a culture called the Yahoo boys, right? They it called Yahoo-Yahoo. And what they do is you go on YouTube, and you search for Yahoo-Yahoo, you'll see them like there's a whole culture behind that. They're dancing, they say, "This is my Monday car, my Tuesday car." And because they're making money and their communities are not, the community helps them because they get money. The stolen money is shared, and so now it becomes harder to break that because it becomes part of a culture. And so, that's why we see a lot more there I think than for example, in the US, or in Russia or in other countries it's 'cause I think there was, there's a, they have this kind of lead way that they'd be doing it for a lot longer and have a better sense of how to be sly. Nic:It sounds like the, the principles of reducing crime apply just as generally in the cyberspace as they do too in the, the non-cyber space. Whereas if you can give opportunities and lu- you know, um, lucrative opportunities to people, to utilize the skills that they've developed, both sort of in an orthodox or in an unorthodox fashion- Peter:Mm-hmm (affirmative). Nic:... then they're gonna put those skills to good use. But if you, if you train them up and then don't give them any way of using those skills to, to go, you know, ma- make a living in a, in a positive sense, they're, they're gonna turn to other, other avenues. Sounds like in, in, in parts of West Africa, that is business email compromise.Peter:Right, it is. And if I could just add two things there, one is that, you know, when I started looking at how to address cyber, online criminality, I have to look at the physical part of it. And in the physical world, there's actually, I call them neighborhoods. You have good neighborhoods, and bad neighborhoods, right? There are some neighborhoods you go to, no one's going to pick pockets you, right? Everyone's got a nice car or whatever. The other neighborhoods you go to, and there are some shady people in the corner, probably selling drugs or something. You know, uh, I'm, I'm being very simplistic, but I'm just trying to say, there are differences in neighborhoods in the physical world, and those need to be looked at as well. Because even if you gave education or a job to someone in a bad neighborhood, because of the environmental pressure, they may not be able to leave that neighborhood because they could be pressured into it. Peter:Online it's the same, I found that you see there are clusters of criminal activities that happen. And in those virtual they're interconnected, it's like, like two, or three levels, they know each other mostly. And so, we can have this kind of, we have to think more holistically, I suppose. I'm trying to say, Nic, that, it, we also have to look at the neighborhood and how do you make sure, for example, that neighborhood they have a sports field or the streets are clean because it makes you feel good, right? There's, there are other environmental factors that I think we may need to consider in a more holistic way. We, we can move much faster that way, because there are different factors, uh, which contribute to this.Nic:So, Peter, I honestly feel like we could keep chatting for the next four hours, right? Natalia:(laughs), I know. Peter:(laughs). Nic:We, we, (laughs). We, we've already, (laughs), eaten up a, a lot of your time, and we've covered a lot of ground. I'd love to circle back one final time to, to language and really sort of ask you is, eh, maybe it's not language, but is there something that you sort of feel particularly passionate about in your career at Microsoft? What you've done so far, what you're working on, and what you hope to do moving forward, is language and opening up accessibility through language, and other sort of cultural diversity? You, you, you, spoke a lot about that in the last sort of, you know, 45 minutes. Is that, is that something that you're personally, uh, invested in, and would like to work more on in the future? And, and if not, what other areas are you, are you looking forward to in the future? Peter:It's, it's absolutely something I'm, I'm very passionate about. And within Microsoft, as an example, the company has invested a lot in diversity and inclusion and equity, and it ended last year, but I was the president of the Africans in Microsoft employee resource group, for example, which has close to a thousand people. And all of it is about helping, working in a two way street, where we help our community, who are at times new in the country. And so, don't understand the cultural differences and how do we help them better, not integrate, but be themselves. And also, allow others that don't understand that they may be a minority, but there's so much richness to that diversity and how it makes teams stronger, because then you're not all looking through the same lens and you can bring in, you know, different perspectives about it. So, I'm absolutely invested in that, not just here in the US but also, you know, the African continent. Peter:And, and I'm very fortunate to be working in a company that's actually pushing me to do that. You know, the company is, is doing amazing things when it comes to diversity and inclusion. And yes, there's room to be made, but at least they're active. Going back really quickly to what you mentioned about language and AI, when we look at the internet, the internet is still zeros and ones. So, when you look at machine learning models, a lot of it is looking for like over 250 signals, right? In a, in one site. And it's not just about the language, it's about different languages, computer code and human code. And so, the machines are bringing those two together, which can help better secure platforms. Natalia:And just as we wrap up here, is there anything you want to plug? Any resources, any groups that you'd like to share with our audience? Peter:I think for me, you know, always try and keep updated on security. So, you know, the Microsoft Security Bulletin is a, is a great source for, uh, up-to-date information. Also, I think there are many other organizations that people can search for and reach out to me on the antenna. If you're not a bad guy or girl, I'll- Natalia:(laughs). Peter:... I'll share, (laughs), we, we can, um, actually, you know, I try to mentor as many people in our industry because, eh, together we become stronger. So, do reach out if you want to. Natalia:Awesome. Thank you for that, Peter. It was great having you on the show again, and I can honestly say, we'd be happy to have you back, and it was infinitely fascinating. Peter:Thank you very much for the invitation again. And, uh, it was a pleasure participating. Natalia:By the way, [foreign language 00:38:17]. Peter:Uh, there you go. Natalia:If you ever want to. Peter:(laughs). Natalia:(laughs). Peter:(laughs). Nic:Natalia, I didn't know you speak Spanish.Natalia:(laughs). Peter:(laughs). Natalia:Well, we had a great time unlocking insights into security from research to artificial intelligence, keep an eye out for our next episode. Nic:And don't forget to tweet us @msftsecurity or mail us at securityunlockedatmicrosoft.com with topics you'd like to hear on a future episode. Until then, stay safe.Natalia:Stay secure.
3/31/2021

The Human Element with Valecia Maclin

Ep. 21
For Women’s History Month, we wanted to share the stories of just a few of the amazing women who make Microsoft the powerhouse that it is. To wrap up the month, we speak with Valecia Maclin, brilliant General Engineering Manager of Customer Security & Trust, about the human element of cybersecurity.In discussion with hosts Nic Fillingham and Natalia Godyla, Valecia speaks to how she transitioned into cybersecurity after originally planning on becoming a mechanical engineer, and how she oversees her teams with a sense of humanity - from understanding that working from home brings unique challenges, to going the extra mile to ensure that no member of the team feels like an insignificant cog in a big machine - Valecia is a shining example of what leadership should look like, and maybe humanity too.In this Episode You Will Learn:• The importance of who is behind cybersecurity protocols• How Microsoft’s Engineering, Customer Security & Trust team successfully transitioned to remote work under Valecia’s leadership• Tips on being a more inclusive leader in the security spaceSome Questions that We Ask:• What excites Valecia Maclin about the future of Cybersecurity• How does a mechanical engineering background affect a GM’s role in Infosec• How Valecia Maclin, General Manager of Engineering, Customer Security & Trust, got to where she is todayResources:Valecia’s LinkedIn:https://www.linkedin.com/in/valeciamaclin/Advancing Minorities’ Interest in Engineering:https://www.amiepartnerships.org/SAFECode:https://safecode.org/Microsoft’s TEALS:https://www.microsoft.com/en-us/tealsMicrosoft’sDigiGirlz:https://www.microsoft.com/en-us/diversity/programs/digigirlz/default.aspxNic’s LinkedIn:https://www.linkedin.com/in/nicfill/Natalia’s LinkedIn:https://www.linkedin.com/in/nataliagodyla/Microsoft Security Blog:https://www.microsoft.com/security/blog/Transcript[Full transcript can be found athttps://aka.ms/SecurityUnlockedEp21]Nic Fillingham:Hello, and welcome to Security Unlocked, a new podcast from Microsoft, where we unlock insights from the latest in news and research from across Microsoft security engineering and operations teams. I'm Nic Fillingham. Natalia Godyla:And I'm Natalia Godyla. In each episode, we'll discuss the latest stories from Microsoft security, deep dive into the newest threat intel research and data science. Nic Fillingham:And profile some of the fascinating people working on artificial intelligence in Microsoft security. Natalia Godyla:And now let's unlock the pod. Hey Nic, welcome to today's episode. How are you doing today? Nic Fillingham:Hello Natalia, I'm doing very well, thank you. And very excited for today's episode, episode 21. Joining us today on the podcast is Valecia Maclin, general manager of engineering for customer security and trust someone who we have had on the shortlist to invite onto the podcast since we began. And this is such a great time to have Valecia come and share her story and her perspective being the final episode for the month of March, where we are celebrating women's history month. So many incredible topics covered here in this conversation. Natalia, what were some of your highlights? Natalia Godyla:I really loved how she brought in her mechanical engineering background to cybersecurity. So she graduated with mechanical engineering degree and the way she described it was that she was a systems thinker. And as a mechanical engineer, she thought about how systems could fail. And now she applies that to cybersecurity and the- the lens of risk, how the systems that she tries to secure might fail in order to protect against attacks. And I just thought that that was such a cool application of a non-security domain to security. What about yourself? Nic Fillingham:Yeah. Well, I think first of all, Valencia has a- a incredibly relatable story up front for how she sort of found herself pointed in the direction of computer science and security. I think people will relate to that, but then also we spent quite a bit of time talking about the importance of the human element in cybersecurity and the work that Valecia does in her engineering organization around championing and prioritizing, um, diversity inclusion and what that means in the context of cybersecurity. Nic Fillingham:It's a very important topic. It's very timely. I think it's one that people have got a lot of questions about, like, you know, we're hearing about DNI and diversity and inclusion, what is it? What does it mean? What does it mean for cybersecurity? I think Valecia covers all of that in thi- in this conversation and her perspective is incredible. Oh, and the great news is, as you'll hear at the end, Valecia is hiring. So if you like me are inspired by this conversation, great news is actually a bunch of roles that you can go and, uh, apply for to go and work for Valecia on her team.Natalia Godyla:On with the pod?Nic Fillingham:On with the pod. Valecia Maclin, welcome to the Security Unlocked podcast. Thank you so much for your time. Valecia Maclin:Thank you, Nic and Natalia. Nic Fillingham:We'd love to start to learn a bit about you. You're, uh, the general manager of engineering for customer security and trust. Tell us what that means. Tell us about your team, us about the amazing work that you and- and the people on your team do. Valecia Maclin:I am so proud of our customer security and trust engineering team. Our role is to deliver solutions and capabilities that empower us to ensure our customers trust in our services and our products. So I have teams that build engineering capabilities for the digital crimes unit. We build compliance capabilities for our law enforcement and national security team. And our team makes sure that law enforcement agencies are in compliant with their local regulatory responsibilities and that we can meet our obligations to protect our customers. Valecia Maclin:I have another team that provides on national security solutions. We do our global transparency centers on where we can ensure that our products are what we say they are. I have two full compliance engineering teams that build capabilities to automate our compliance at scale for our Microsoft security development lifecycle, as well as, uh, things like, uh, advancing machine learning, advancing open source security, just a wealth of enterprise wide, as well as stakeholder community solutions. Um, I could go on and on. We do digital safety engineering, so a very broad set of capabilities all around the focus and the mission of making sure that the products and services that we deliver to our customers are what we intend and say that they are Nic Fillingham:Got it. And Valencia so how does your engineering org relate to some of the other larger engineering orgs at Microsoft that are building, uh, security compliance solutions?Valecia Maclin:So our other Microsoft organizations that do that are often building those capabilities within a particular product engineering group. Um, customer security and trust is actually in our corporate, external and legal affairs function. So we don't have that sales obligation. Our full-time responsibility is looking across the enterprise and delivering capabilities that meet those broad regulatory responsibility. So again, if we think about our digital crimes unit that partners with law enforcement to protect our customers around the world, well building capabilities for them or digital safety, right? If you think about the Christ church call and what happened in New Zealand, we're building capabilities to help with that in partnership with what those product groups may need to do. So, um, so we're looking at compliance more broadly. Nic Fillingham:Got it. And does your team interface with some of the engineering groups that are developing products for customers? Valecia Maclin:Absolutely. So when you think about the work that we do in the open source security space, our team is kinda that pointy end of the spear to do, um, that assessment and identify here where some areas are that we need to put some focus and then the engineering, the product engineering groups will then and build, go and build that resiliency into the systems. Nic Fillingham:To follow up questions. One is on the podcast, we've actually spoken to some- some folks that are on your team. Uh, Andrew Marshall was on an earlier episode. We spoke with Scott Christianson, we've had other members of the digital crimes unit come on and talk about that work, just a sort of a sign post for listeners of the podcast. How does Andrew's work, uh, fit in your organization? How does Scott's work fit into your organization? Valecia Maclin:So, um, both Andrew and Scott are in a team, um, within my org, uh, that's called security engineering and assurance, and they're actually able to really focus their time on that thought leadership portion. So again, if you think about the engineering groups and the product teams, they have to, you know, really focus on the resiliency of the products, what our team is doing is looking ahead to think about what new threat vectors are. So if you think about the work that Andrew does, he partnered with Harvard and- and other parts of- of Microsoft to really advance thought leadership and how we can interpret adversarial machine learning. Valecia Maclin:Um, when you think about some of our other work in our open source security space, it is let's look forward at where we need to be on the edge from a thought leadership perspective, let's prototype some capabilities operationalizes, so that it's tangible for the engineering groups that then apply and then, uh, my guys will go and partner with the engineering groups and gi- and girls, right? So- so, um, we will then go and partner with the product groups to operationalize those solutions either as a part of our security, um, development life cycle, or just a general security and assurance practices. Nic Fillingham:Got it. And I think I- I can remember if it was Scott or Andrew mentioned this, but on a previous podcast, there was a reference to, I think it's an internal tool, something called Liquid. Valecia Maclin:Liquid, yes, uh, yeah. Nic Fillingham:Is that, can you talk about that? Cause we, uh, it was hinted at in the previous episode? Valecia Maclin:Absolutely. Yes. Yeah. So Liquid, um, actually have a full team that builds and sustains Liquid. It is a, um, custom built capability that allows us to basically have sensors within our built systems. Um, and so when you think about our security development life cycle, and you think about our operational security requirements, it's given us a way to automate not only those requirements, but you know, ISO and NIST standards. Um, and then that way, with those hooks into the build systems, we can get a enterprise wide look at the compliance state of our bills as they're going on. Valecia Maclin:So a developer in a product group doesn't have to think about, am I compliant with SDL? Um, what they can do is, you know, once the- the data is looked at, we can do predictive and reactive analysis and say, hey, you know, there's critical bugs in this part of the application that haven't been burned down within 30 days. And so rath- rather than a lot of manual and testation, we can do, um, compliance a scale. And I- I just mentioned manual and testation of security requirements. Oh, one of my other teams, um, has recently just launched Valecia Maclin:.. the capability that we're super excited about that leverages what we call Coach UL or used to be called Simile. That again, is automating kind of on the other edge, right? So, with liquid, it's once we pulled in the build data. Um, we're working with the engineering groups in Microsoft now to, um, do the other edge where they don't have to set up a test that they're compliant with security requirements. Um, we're, we're moving very fast to, um, automate that on behalf of the developer, so that again, we're doing security by design. Nic Fillingham:So, how has your team had to evolve and change, uh, the way that they, they work during this sort of the COVID era, during the sort of work from home? Was your team already set up to be able to securely work remotely or were there sort of other changes you had to make on the fly? Valecia Maclin:So, you know, uh, as we've been in COVID, my team does respond to phenomenally. We were actually well positioned to work from home and continue to function from home. You know, there were some instances where from an ergonomic perspective, let's get some resources out to folks because maybe their home wasn't designed for them to be there, you know, five days a week. So, the, the technical component of doing the work, wasn't the challenge. What I, as a leader continuously emphasized, and it's what, what my team needed, frankly, is making sure we stayed with the connectedness, right?Valecia Maclin:How do we continue to make sure that folks are connected, that they don't feel isolated? That, you know, they feel visibility from their, from their managers? And consider I had, I had 10 new people start in the past year, entirely through COVID including three new college hires. So, can you imagine starting your professional-Nic Fillingham:Wow.Valecia Maclin:... career onboarding and never being in the office with your peers or colleagues and, and, you know, and the connected tissue you would typically organically have to build relationships. And so through COVID, during COVID, we've had to be very creative about building and sustaining the connective tissue of the team. Making sure that we were understanding folks, um, personal needs and creating a safe space for that. You know, I was a big advocate way back in August where I said, Hey folks, you know, 'cause the sch- I knew the school year was starting. And even though we hadn't made any statements yet about when returned to work would, you know, would advanced to, I made a statements to my team of, Hey, it's August, we've been at this for a few months. It's not going anywhere anytime soon. Valecia Maclin:So, I don't want us carrying ourselves as if we're coming back to the office tomorrow. Let's, you know, give folks some space to reconcile what this is gonna look like if they have childcare, if they have elder care, if they're just frozen from being in- indoors this amount of time. Let's make sure that we're giving each other space for that. Also during the past year, you know, certainly we had, I would say, parallel once in a generation type events, right?Valecia Maclin:So, we had COVID, but we also had, uh, increased awareness, you know, of, of the racial inequities in our country. And for me as a woman of color that's in cybersecurity, I've spent my entire career being a, a series of first, um, particularly at the executive table. And so, you know, so it was a, an opportunity we also had in the past year to advance that conversation so that we could extend one another grace, right? So I personally was touched by COVID. I, I lost five people in the past year. Um, and I was also-Nic Fillingham:I'm so sorry. Valecia Maclin:Yeah. (laughs) And you keep showing up, right? And I was personally touched as a black woman who once again, has to be concerned about, you know, I have, uh, I have twin nephews that are 19, one's autistic and the other is not, but we won't allow him to get a driver's license yet 'cause he, my, my sister's petrified because, you know, that's a real fear that a young man who's 6'1", sweetest thing you would ever see, soft-spoken, um, but he's 6'1". He has, you know, dreadlocks in his hair or locks. He would hate to hear me say they were dreads. He has locks in his hair. Um, and he dresses like a 19 year old boy, right?Valecia Maclin:But on spot, that's not what the world sees. And so, um, that's what we're all in. Then you think about what's happening now with our Asian-American community. That's also bundled with folks who are human, having to be isolated and endorse, which that's not how humanity was designed. And so we have to remember that that shows up. And, and when you're in, in the work of security, where you're always thinking about threat actors, and I often say that some of our best security folks have kind of some orthogonal thinking that's necessary to kind of deal with the different nuances.Valecia Maclin:When you, when you are thinking about how do you build resiliency against ever evolving threats, (laughs) not withstanding the really massive one that, you know, was the next one we, we dealt with at the end of the last calendar year. Those are all things that work in the circle. And I always say that people build systems, they don't build themselves. And in this time more than ever, hopefully, as security professionals, we're remembering the human element. And we're remembering that the work that we do, um, has purpose, which is, you know, why I entered this space in, in the first and why I've spent my career doing the things I've done is because we have a phenomenal responsibility increasingly in a time of interconnectedness from a technology perspective to secure our way of life. Nic Fillingham:Wow. Well, on, on that note, you talked about sort of why you went into security. I'd love to sort of, I'd love to go there. Would you mind talking us through how you sort of first learnt of security and, and why you're excited about it, and how you made the decision to, to go into that space? Valecia Maclin:Absolutely. So, mine actually started quite awhile ago. I was majoring in mechanical engineering and material science, uh, at Duke university. I was in my junior year and, um, I should preface it with, I did my four year engineering degree in three and a half years. So, my, my junior year was pretty intense. I worked, was working on a project for mechanical engineering that I'd spent about seven hours on and I lost my data.Nic Fillingham:Ah!Valecia Maclin:I was building a model, literally, I sat at the computer because, you know, you know, back then, you know, there weren't a whole lot of computer resources, so you try to get there early and, and, and snag the computer so that you could use it as long as you needed to. I went in actually, on a holiday because I knew everybody would be gone. So, if I, I could have the full day and not have to give up the computer to someone. So, I'd spend seven hours building this model and it disappeared. Valecia Maclin:And it was the, you know, little five in a 10 floppy, I'm pulling it out, I'm looking at the box (laughs). It's gone. The, the, the model's gone. I was gonna have to start all over. I started my homework over again, but then I said, I will never lose a homework assignment like that again. So, I went and found a professor in the computer science school to agree to do an independent study with me, because as a junior, no one was gonna allow me to change my major for mechanical engineering that far in, at Duke University. So, (laughs) not, not my parents, anyway. So, I, um, did an independent study in computer science and taught myself programming. So, I taught myself programming, taught myself how to understand the hardware with, with my professors help, of course. But it was the work I did with that independent study that actually led to the job I was hired into when I graduated. Valecia Maclin:So, I've never worked as a mechanical engineer. I immediately went into doing national security work, um, where I worked for companies that were in the defense industrial base for the United States. And so I, I started and spent my entire career building large scale information systems for, you know, the DOD, for the intelligence community, and that vectored into my main focus on large, um, security systems that I was developing, or managing, or leading solutions through. So, it started with loss data, right? (laughs) You know, which is so apropos for where we are today, but it started with, you know, losing data on a software, in a software application and me just being so frustrated Valecia Maclin:Straight and said, that's never gonna happen to me again (laughs) that, um, that led me to pursue work in this space. Natalia Godyla:How did your degree in mechanical engineering inform your understanding of InfoSec? As you were studying InfoSec, did you feel like you were bringing in some of that knowledge? Valecia Maclin:One of the beautiful things and that was interesting is I would take on new roles, I'll, I'll never forget. Um, I, I got wonderful opportunities as, as my career was launched and folks would ask me, well, why are you gonna go do that job? You've never done that before, you know, do you know it? (laughs) And so what that taught me is, you know, you don't have to know everything about it going in, you just need to know how to address the problem, right? So, I consider myself a systems thinker, and that's what my mechanical engineering, um, background provided was look at the whole system, right? And so how do you approach the problem? And also because I also had a material science component, we studied failures a lot. So, material failure, how that affected infrastructure, you know, when a bridge collapse or, or starts to isolate. Um, so it was that taking a systems view and then drilling down into the details to predictively, identify failures and then build resiliency to not have those things happen again. Is that kind of that, that level of thinking that played into when I went into InfoSec. Natalia Godyla:That sounds incredibly fitting. So, what excites you today about InfoSec or, or how has your focus in InfoSec changed over time? What passions have you been following? Valecia Maclin:So, for me, it's the fact that it's always going to evolve, right? And so, you know, obviously the breaches make the headlines, but I'm one, we should never be surprised by breaches, just like we shouldn't be surprised by car thefts or home invasions, or, you know, think about the level of insurance, and infrastructure, and technology, and tools and habits (laughs) that we've, uh, we've developed over time for basic emergency response just for our homes or our life, right? Valecia Maclin:So, for me, it's just part of the evolution that we have, that there's always gonna be something new and there's always gonna be that actor that's gonna look to take a shortcut, that's gonna look to take something from someone else. And so in that regard, it is staying on the authence of building resiliency to protect our way of life. And so I, I am always passionate and again, it's, it's likely how I, you know, spent almost, you know, over 27 years of my career is protecting our way of life. But protecting it in a way where for your everyday citizen, they don't have to go and get the degree in computer science, right? Valecia Maclin:That they can have confidence in the services and the, the things that they rely on. They can have confidence that their car system's gonna break, that the brakes are gonna hit, you know, activate when they hit it. That's the place I wanna see us get to as it relates to the dependency we now have on our computer systems, and in our internet connected devices and, and IOT and that sort of thing. So, that's what makes me passionate. Today it may look like multi-factored authentication and, you know, zero trust networks, but tomorrow is gonna look like something completely different. And what I, where I'd love to see us get is, you know, think about your car. We don't freak out about the new technologies that show up in our car, you know, 'cause we know how, we, we, we get in and we drive and, and we anxiously await some people.Valecia Maclin:I, I'm kind of a control freak, I wanna still drive my car. I don't want it to drive itself (laughter). Um, but nevertheless, with each, you know, generational evolution of the car, we didn't freak out and say, Oh my gosh, it's doing this now. If we can start to get there to where there's trust and confidence. And, and that's why I love, you know, what my org is responsible for doing is, you know, that there's trust and confidence that when Microsoft, when you have a Microsoft product or service, you, you, you can trust that it's doing what you intend for it to do. And, and that's not just for here, but then, you know, when you're again, whether it's the car, or your refrigerator, or your television, that's where I'd love to, that's where I want to see us continue to evolve. Not only in the capabilities we deliver, but as a society, how we expect to interact with them. Natalia Godyla:Are you particularly proud of any projects that you've run or been part of in your career? Valecia Maclin:I am. And it's actually what led me to Microsoft, I had my greatest career success, but it, it came also at, at a time of, of, of my greatest personal loss. Literally they were concurrent on top of each other. And so I was responsible, I was the, the business executive responsible for the cybersecurity version of, of, of the JEDI program. Uh, so I was the business executive architecting our response to that work that was what the department of Homeland Security. I worked for a company that at the time wasn't known for cybersecurity, and so it was a monumental undertaking to get that responsibility. And the role was to take over and then modernize the cybersecurity re- system responsible for protecting the .gov domain. So, it was tremendously rewarding, especially in the optic that we have today. I received the highest award that my prior company gives to an individual. Valecia Maclin:I was super proud of the team that I was able to lead and, and keep together during all the nuances of stop, start, stop, start that government contracting, um, does when there's protests. But during that same time, you know, 'cause it was, so it was one of those once in a career type opportunities, if you've ever done national security work, to actually usher an anchor in a brand new mission is how we would label it, um, that you would be delivering for the government. But at the same time, that, that wonderfully challenging both technically and from a business perspective scenario was going on, I, in successive moments, lost my last grandparent, suddenly lost my sister. 12 months later, suddenly lost my mother, six months later had to have major surgery. So, that all came in succession while I was doing this major once in a career initiative that was a large cyber security program to protect our government. Valecia Maclin:And I, I survived, (laughs) right? So, um, the, the program started and did well, but I, I then kind of took a step back, right? Once I, I, uh, I'd promised the company at the time of the government that I would, I would give it a year, right? I would make sure the program transitioned since we'd worked so hard to get there. And then I took a step back and said, Hmm, what do I really wanna do? This was a lot (laughs). And so I did take a step back and got a call from Microsoft, actually, um, amongst some other companies. Uh, I thought it was gonna take a break, but clearly, um, others had, had different ideas. And so, um, (laughter) I had, I had multiple opportunities presented to me, but what was so intriguing and, and what drew me to Microsoft was first of all, the values of the company. You know, I'm a values driven person and the values, um mean a lot and I'm gonna come back to that in a moment. Valecia Maclin:But then also I, I mentioned that the org I lead is in corporate external and legal affairs. It's not within the product group. It's looking at our global obligations to securing our products and services from a, not just a regulatory perspective, but not limited by our, our sales target. And so the ability to be strategic in that way is what was intriguing and what, what drew me. When you think about the commitments the company has made to its employees and to its vendors during a time, um, that we've been in, it says a lot about the fabric of, of who we are to take that fear of employability insurance and those sorts of things that are basic human needs, to recall how early on we still had our cafeteria services going so that they could then go and provide meals for, for students who would typically get school meals. And at the same Valecia Maclin:... time it meant that those vendors that provide food services could continue to do their work. When you think about our response to the racial inequity and, and justice, social justice initiative, and the commitments were not only, not only made, but our, our keeping is the fabric of the company and the ability to do the work that I'm passionate about, that, that drew me here. Nic Fillingham:You talked about bringing the human element to security. What does that mean to you and how have you tried to bring that sort of culturally into your organization and, and, and beyond?Valecia Maclin:So, if you think about the human element of security, the operative word is human. And so as humans, we are a kaleidoscope of gender, and colors, and nationalities and experiences. Even if you were in the same town, you have a completely different experience that you can bring to bear. So, when I think about how I introduce, um, diversity, equity and inclusion in the organization that I lead, it is making sure that we're more representative of who we are as humans. And sometimes walking around Redmond, that you don't always get that, but it's the, you know, I, I come from the East Coast. So, you know, one of the going phrases I would use a lot is, I'm not a Pacific Northwestner or I don't have this passive aggressiveness down, I'm pretty direct (laughs). And so that's a different approach, right, to how we do our work, how we lean in, how we ask questions. Valecia Maclin:And so I am incredibly passionate about increasing the opportunities and roles for women and underrepresented minorities, underrepresented, uh, minorities in cybersecurity. And so we've been very focused on, you know, not just looking at internal folks that we may have worked on, worked on another team, you know, for years, and making sure that every opportunity in my organization is always opened up both internally and externally. They're always opened up to make sure that we're, we're looking beyond our mirror image to, um, hire staff. And it's powerful having people that think the same way you do, because you can coalesce very quickly. But the flip side of that is sometimes you can lose some innovation because everybody's seeing the same thing you see. And, and it's so important in, in security because we're talking about our threat actors typically having human element, is making sure that we can understand multiple voices and multiple experiences as we're designing solutions, and as we're thinking about what the threats may be. Natalia Godyla:So, for women or, uh, members of minority groups, what guidance do you have for them if they're not feeling empowered right now in security, if they don't know how to network, how to find leaders like yourself, who are supporting DNI? Valecia Maclin:One of the things I always encourage folks to do, and, and I mentor a lot is, just be passionate about who you are and what you contribute. But what I would say, uh, Natalia, is for them to take chances, not be afraid to fail, not be afraid to approach people you don't know, um, something that I got comfortable with very early as if I was somewhere and heard a leader speak on stage somewhere, or I was, uh, you know, I saw someone on a panel internally or externally, I would go up to them afterwards and introduce myself and ask, you know, would you be willing to have a career discussion with me? Can I get 30 minutes on your calendar? And so that was just kind of a normal part of my rhythm, which allowed me to be very comfortable, getting to meet new executive leaders and share about myself and more importantly, hear about their journeys. Valecia Maclin:And the more you hear about other's journey, you can help cultivate a script for your own. And so, so that's what I often encourage 'cause a lot of times folks are apr- afraid, particularly women and, and minorities are afraid to approach to say, think, well, you know, I don't know enough, or I don't know what to ask. It can be as simple as, I heard you speak, I would love to hear more about your story. Do you have time? Do you have 20 minutes? And then let, you know, relationships start from there and let the learning start from there. Nic Fillingham:As a leader in the security space, as a leader at Microsoft, what are you excited about for the future? What what's sort of coming in terms of, you know, it could be cultural change, it could be technology innovation. What, what are you sort of looking and seeing in the next three, five, 10 years? Valecia Maclin:For me it the cultural change. I'm looking forward and you heard me kind of allude to a little bit of this of, you now have the public increasingly aware of what happens when there's data loss. I'm so excited to look forward to that moment when that narrative shifts and the public learns and knows more of security hygiene, cyber security hygiene. And, and not, you know, both consumer and enterprise, because we take for granted that enper- enterprises have nailed this. And, and we're in a unique footing as a company to have it more part of our DNA, but not every company does. And so that's what I'm looking forward to for the future is the culture of that young person in the midst of schooling, not having to guess about what a cybersecurity or security professional is, much like they don't guess what a lawyer or a doctor is, right? So, that's what I look forward to for the future. Nic Fillingham:Any organizations, groups that you, you know, personally support or fans of that you'd also like to plug? Valecia Maclin:Sure. So, I actually support a, a number of organizations. I support an organization called Advancing Minorities in Engineering, which works directly with historically black colleges and universities to not only increase their learning, but also create opportunities to extend the representation in security. I also am a board member of Safe Code, which is also focused on advancing security, design, hygiene across enterprises, small midsize and large businesses. And so, so those are, are certainly, uh, a couple of, of organizations that, you know, I dedicate time to.Valecia Maclin:I would just encourage folks, you know, we have TEALS, we have DigiGirlz. everyone has a role to play to help expand the perception of what we do in the security space. We're not monolithic. The beauty of us as a people is that we can bring our differences together to do some of the most phenomenal, innovative things. And so that would be my ask is in, whatever way fits for where someone is, that they reach out to someone and make that connection. I v- I very often will reach down and, uh, I'll have someone, you know, a couple levels down and say, Oh my gosh, I can't believe you called and asked for a one-on-one. Valecia Maclin:So, I don't wait for folks to ask for a one-on-one with me. I, I'll go and ping and just, you know, pick someone and say, Hey, you know, I wanna, I just wanna touch base with you and see how you're doing and see what you're thinking about with your career. All of us can do that with someone else and help people feel connected and seen. Natalia Godyla:And just to wrap here, are you hiring, are there any resources that you want to plug or share with our audience, might be interested in continuing down some of these topics? Valecia Maclin:Absolutely. Thank you so much. Um, so I am hiring, hiring data architects, 'cause you can imagine that we deal with high volumes of data. I'm hiring software engineers, I'm hiring, uh, a data scientist. So, um, data, data, and more data, right?Natalia Godyla:(laughs).Valecia Maclin:And, um, and software engineers that are inquisitive to figure out the, the right ways for us to, you know, make the best use of it. Natalia Godyla:Awesome. Well, thank [crosstalk 00:35:11] you for that. And thank you for joining us today, Valecia.Valecia Maclin:Thank you, Natalia. Thank you, Nic. I really enjoyed it.Natalia Godyla:Well, we had a great time unlocking insights into security from research to artificial intelligence. Keep an eye out for our next episode.Nic Fillingham:And don't forget to tweet us @msftsecurity or email us at securityunlocked@microsoft.com with topics you'd like to hear on a future episode. Until then, stay safe.Natalia Godyla:Stay secure.
3/24/2021

Identity Threats, Tokens, and Tacos

Ep. 20
Every day there are literally billions of authentications across Microsoft – whether it’s someone checking their email, logging onto their Xbox, or hopping into a Teams call – and while there are tools like Multi-Factor Authentication in place to ensure the person behind the keyboard is the actual owner of the account, cyber-criminals can still manipulate systems. Catching one of these instances should be like catching the smallest needle in the largest haystack, but with the algorithms put into place by the Identity Security team at Microsoft, that haystack becomes much smaller, and that needle, much larger.On today’s episode, hostsNic Fillingham and NataliaGodyla invite back Maria Puertos Calvo, theLeadDataScientistin Identity Security and Protection at Microsoft,to talk with us about how her team monitors such amassive scale of authentications on any given day.Theyalsolookdeeper into Maria’s background and find out what got her into the field of security analytics andA.I. in the first place, and how her past in academiahelpedthattrajectory.In this Episode You Will Learn:• How the Identity Security team uses AI to authenticate billions of logins across Microsoft• Why Fingerprints are fallible security tools• How machine learning infrastructure has changed over the past couple of decades at MicrosoftSome Questions that We Ask:• Is the sheer scale of authentications throughout Microsoft a dream come true or a nightmare for a data analyst?• Do today’s threat-detection models share common threads with the threat-detection of previous decades?• How does someone become Microsoft’s Lead Data Scientist for Identity Security and Protection?Resources:#IdentityJobs at Microsoft:https://careers.microsoft.com/us/en/search-results?keywords=%23identityjobsMaria’s First Appearance on Security Unlocked, Tackling Identity Threats with A.I.: https://aka.ms/SecurityUnlockedEp08Maria’s Linkedin: https://www.linkedin.com/in/mariapuertas/Nic’s LinkedIn:https://www.linkedin.com/in/nicfill/Natalia’s LinkedIn:https://www.linkedin.com/in/nataliagodyla/Microsoft Security Blog:https://www.microsoft.com/security/blog/Transcript[Full transcript can be found at https://aka.ms/SecurityUnlockedEp20]Nic Fillingham:Hello, and welcome to Security Unlocked, a new podcast from Microsoft where we unlock insights from the latest in news and research from across Microsoft security engineering and operations teams. I'm Nic Fillingham.Natalia Godyla:And I'm Natalia Godyla. In each episode, we'll discuss the latest stories from Microsoft security, deep dive into the newest threat intel, research, and data science. Nic Fillingham:And profile some of the fascinating people working on Artificial Intelligence in Microsoft security. Natalia Godyla:And now, let's unlock the pod.Nic Fillingham:Hello, Natalia. Welcome to episode 20 of Security Unlocked. This is, uh, an interesting episode. People may notice that your voice is absent from the... This interview that we had with Maria Puertos Calvo. How, how you doing? You okay? You feeling better?Natalia Godyla:I am, thank you. I'm feeling much better, though I am bummed I missed this conversation with Maria. I had so much fun talking with her in episode eight about tackling identity threats with AI. I'm sure this was equally as good. So, give me the scoop. What did you and Maria talk about?Nic Fillingham:It was a great conversation. So, you know, this is our 20th episode, which is kind of crazy, of Security Unlocked, and we get... We're getting some great feedback from listeners. Please, send us more, we want to hear your thoughts on the... On the podcast. But there've been a number of episodes where people contact us afterwards on Twitter or an email and say, "Hey, that guest was amazing," you know, "I wanna hear more." And Maria was, was definitely one of those guests who we got feedback that they'd love for us to invite them back and learn more about their story. So, Maria is on the podcast today to tell us about her journey into security and then her path to Microsoft. I won't give much away, but I will say that, if you're studying and you're considering a path into cyber security, or you're considering a path into data science, I think you're gonna really enjoy Maria's story, how she sort of walks through her academia and then her time into Microsoft. We talk about koalas and we talk about the perfect taco.Natalia Godyla:Yeah, to pair with the guac which she covered the first time around. Now tacos. I feel like we're building a meal here. I'm kind of digging the idea of a Security Unlocked recipe book. I, I think we need some kind of mocktail or cocktail to pair with this.Nic Fillingham:Yeah, I do think two recipes might not be enough to qualify for a recipe book. Natalia Godyla:Yeah, I mean, I'm feeling ambitious. I think... I think we could get more recipes, fill out a book. But with that, I, I cannot wait to hear Maria's episode. So, on with the pod?Nic Fillingham:On with the pod.Nic Fillingham: Maria Puertos Calvo, welcome back to the Security Unlocked podcast. How are you doing?Maria Puertos Calvo:Hi, I'm doing great, Nic. Thank you so much for having me back. I am super flattered you guys, like, invited me for the second time.Nic Fillingham:Yeah, well, thank you very much for coming back. The episode that we, we, we first met you on the podcast was episode eight which we called Tackling Identity Threats With AI, which was a really, really popular episode. We got great feedback from listeners and we thought, uh, let's, let's bring you back and hear a bit more about your, your own story, about how you got into security, how you got into identity, how you got into AI. And then sort of how you found your way to Microsoft. Nic Fillingham:But since we last spoke, I want to get the timeline right. Did you have twins in that period of time or had the twins already happened when we spoke to you in episode eight?Maria Puertos Calvo:(laughs) No, the twins had already happened. They-Nic Fillingham:Got it.Maria Puertos Calvo:I think it's been a few months. But they're, they are nine, nine months old now. Yeah.Nic Fillingham:Nine months old. And, and the other interesting thing is you're now in Spain.Maria Puertos Calvo:Yes.Nic Fillingham:When we spoke to you last, you were in the Redmond area or is that right?Maria Puertos Calvo:Yes, yes. The... Last time when we, we spoke, I, I was in Seattle. But I was about to make this, like, big trip across the world to come to Spain and, and the reason was, actually, you know, that the twins hadn't met my family. I am originally from Spain, and, and my whole family is, is here. And, you know, because of COVID and everything that happened, they weren't able to travel to the US to see us when they were born. So, my husband and I decided to just, like, you know, do a trip and take them. And, and we're staying here for a few months now. Nic Fillingham:That's awesome. I've been to Madrid and I've been to... I think I've only been to Madrid actually. Where, where... Are you in that area? What part of Spain are you in?Maria Puertos Calvo:Yes, yes. I'm in Madrid. I'm in Madrid. I, I'm from Madrid.Nic Fillingham:Aw- awesome. Beautiful city. I love it. So, obviously, we met you in episode eight, but if you could give us, uh, a little sort of mini reintroduction to who you are, what's your job at Microsoft, what does your... What does your day-to-day look like, that'd be great.Maria Puertos Calvo:Yeah. So, I am the lead data scientist in identity secure and protection, identity security team who... We are in charge of making sure that all of the users who use, uh, Microsoft identity services, either Azure Active Directory or Microsoft account, are safe and protected from malicious, you know, uh, cyber criminals. So, so, my team builds the algorithms and detections that are then put into, uh, protections. Like, for example, we build machine learning for risk based authentication. So, if we... If our models think an authentication is, is probably compromised, then maybe that authentication is challenged with MFA or blocked depending on the configuration of the tenet, et cetera. Maria Puertos Calvo:So, my team's day-to-day activities are, you know, uh, uh, building new detections using new data sets across Microsoft. We have so much data between, you know, logs and APIs and interactions b- between all of our customers with Microsoft systems. Uh, so, so, we analyze the data and, and we build models, uh, apply AI machine learning to detect those bad activities in the ecosystem. It could be, you know, an account compromised a sign-in that looks suspicious, but also fraud. Let's say, like, somebody, uh, creates millions of spammy email addresses with Microsoft account, for example to do bad things to the ecosystem, we're also in charge of detecting that.Nic Fillingham:Got it. So, every time I log in, or every time I authenticate with either my Azure Active Directory account for work or my personal Microsoft account, that authentication, uh, event flows through a set of systems and potentially a set of models that your team owns. And then if they're... And if that authentication is sort of deemed legitimate, I'm on my way to the service that I'm accessing. And if it's deemed not legitimate, it can go for a challenge through MFA or it'll be blocked? Did, did I get that right?Maria Puertos Calvo:You got that absolutely right.Nic Fillingham:So, that means... And I think we might've talked about this on the last podcast, but I still... I... As a long-term employee of Microsoft, I still get floored by the, the sheer scale of all this. So, there's... I mean, there's hundreds of millions of Microsoft account users, because that's the consumer service. So, that's gonna be everything from X-Box and Hotmail and Outlook.com and using the Bing website. So, that's, that's literally in the hundreds of millions realm. Is it... Is it a billion or is it... Is it just hundreds of millions?Maria Puertos Calvo:It depends on how you count them. Uh, if it's per day, it's hundreds of millions, per month I think it's close to a billion. Yes, for... Of users. But the number of authentications overall is much higher, 'cause, you know, the users are authenticating in s- in s- many cases, many, many times a day. A lot of what we evaluate is not only, like, your username and password authentications, there's also the, you know, the model authe- authentication particles that have your tokens cash in the application and those come back for request for access. So, the... We evaluate those as well. Maria Puertos Calvo:So, it's, uh... It's actually tens of billions of authentications a day for both the Microsoft account system and the Azure Active Directory system. Azure Active Directory is also a... Really big, uh, it's almost... It's, it's getting really close to Microsoft account in terms of monthly, monthly active users. And actually, this year, with, you know, COVID, and everybody, you know, the... All the schools, uh, going remote and so many people going to work from home, we have seen a huge increase in, in, in monthly active users for Azure Active Directory as well.Nic Fillingham:And do you treat those two systems separately? Uh, or, or are they essentially the same? It's the same anomaly detection and it's the same sort of models that you'd use to score and determine if a... If an authentication attempt is, is, uh, is legitimate or, or otherwise?Maria Puertos Calvo:It's, like, theoretically the same. You know, like, we, we use the same methodology. But then there are different... The, the two systems are different. They live in different places with different architectures. The data that is logged i- is different. So, these, these were initially not, you know... I- identity only, uh, took care of those two systems, like, a few years ago, before they w- used to be owned by different teams. So, the architecture underneath is still different. So, we still have to build different models and maintain them differently and, you know, uh, uh, tune them differently. So, so it is more work, but, uh, the, the theory and the idea, their... How we built them is, is very similar.Nic Fillingham:Are there some sort of trends that have, you know, appeared, having these two massive, massive systems sort of running in parallel but with the same sort of approach? What kind of behaviors or what kind of anomalies do you see detected in one versus the other? Do they sort of function sort of s- similar? Like, similar enough? Or do you see some sort of very different anomalies that appear in one system and, and not another.Maria Puertos Calvo:They're, interestingly, pretty different. Uh, when we see attack spikes and things like that, they don't always reflect one or the other. I think the, the motivation of the people that attack enterprises and organizations, it's, it's definitely from the, the hackers that are attacking consumer accounts. I think they're, you know, they're so in the black market separately, and they're priced separately, you know, and, and differently. And I think they're, they're generally used for different purposes. We see sometimes spikes in correlation, but, but not that much.Nic Fillingham:Before we sort of, uh, jump in to, to your personal story into security, into Microsoft, into, into data science, is the... You know, these... Talking about these sheer numbers, talking about the hundreds of millions of, of authentications, I think you said, like, tens of billions that are happening every day. Is that a dream for a data scientist to just have such a massive volume of data and signals at your fingertips that you can use to go and build models, train models, refine models? Is that, you know... Is this adage of more signal equals better, does that apply? Or at some point do you now have challenges of too much signal and you're now working on a different set of problems?Maria Puertos Calvo:That's a great question. It is an absolute dream and it's also a nightmare. (laughs) So, yeah. It is... It... And I'll tell you why for both, right? Like, a... It is a great dream. Like, obviously, you bet... The, the sheer scale of the data, the, you know, the, the fact... There are a lot of things that are easier, because sometimes when you're working with data and statistics, you have to do a lot of things to estimate if, Maria Puertos Calvo:... it's like the things that you're competing are statistically significant, right? Like, do I have enough data to approach that this sample, it's going to be, uh, reflection of reality, and things like that. With the amount of data that we have, with the amount of users that we have, it's the, we don't have that, we, we don't really have that problem, right? Like we are able to observe, you know, the whole rollout without having to, to figure out if what we're seeing, you know, it's similar to the whole world or not. Maria Puertos Calvo:So that's really cool. Also, because we're, you know, have so many users, then we also have, you know, we're a big focus for attackers. So, so we can see everything, you know, that happens in, in, in the cybersecurity world and like the adversary wall, we can find it in, in our data. And, and that is really interesting. Right. It's, it's really cool. Nic Fillingham:That sounds fascinating. But let, let, let's table that for a second. 'Cause I'd love to sort of go back in time and I'd love to learn about your journey into security, into sort of computer science, into tech, where did it all start? So you grew up in Madrid, is that right? Maria Puertos Calvo:Yes. I grew up in Madrid and when I was finishing high school and I was trying to figure out like, why do I do, I just decided to study telecommunication engineering, it's what's called a Spain, but it's ev- you know, the, the equivalent who asked degrees electrical engineering. Because I was actually, you know, really, really interested in math and science and physics. They were like my favorite subjects in high school. I was pretty, really good at it actually. Maria Puertos Calvo:And, but at the same time, I was like, well, this, you know, an engineering degree sounds like something that I could apply all of this to. And the one that seems like the coolest and the future and like I, I, is electrical engineering. Like I, at that time, computer science was also kind of like my second choice, but I knew that in electrical engineering, I could also learn a lot of computer science. Maria Puertos Calvo:It w- it has like a curriculum that includes a lot of computer science, but also you learn about communication theory and, you know, things like how do cell phones work? And how does television work? And you can learn about computer vision and image processing and all, all kinds of signal processing. I just found it fascinating. Maria Puertos Calvo:So, so I, I started that in college and then when I finished college, it was 2010. So it was right in the middle of the great recession, which actually hits Spain really, really, really badly when it came to the, the labor market, the unemployment back then, I think it was something like 25%-Nic Fillingham:Wow.Maria Puertos Calvo:... and people who were getting out of school, even in engineering degrees, which were traditionally degrees that would have, you know, great opportunities. They were not really getting good jobs. People, only consulting firms were hiring them, um, and, and really paying really, really little money. It was actually pretty kind of a shame. So I said, what, what, what should I do? And I, I had been a good student during college, so, and I had a professor that, you know, he, that I had done my kind of thesis with him and his research group. Maria Puertos Calvo:And he said, "Hey, why didn't you just like, continue studying? Like, you can actually go for your PhD and, because you have really good grades, I'm sure you can just get it full of finance. You can get a scholarship that will like finance, you know, four years of PhD. And you know, that way you don't have to pay for your studies, but also you kind of like, you're like a researcher and you have, uh, like money to live." And I was like, well, that sounds like a really good plan.Nic Fillingham:Sounds good.Maria Puertos Calvo:Like I actually, yeah. So, so I could do in that. And, and I, you know, then my master said, this masters say, wasn't computer science, but it was very pick and choose, right? Like, like you could pick your branch and what classes you took. And so the master's was the first half of the PhD was basically getting all your PhD qualifying courses, which also are equivalent to, to doing your masters. Maria Puertos Calvo:So I picked kind of like the artificial intelligence type branch, which had a lot of, you know, classes on machine learning and learn a lot of things that are apply that are user apply machine learning, it's like, uh, natural language processing and speech and speaker recognition and biometrics and computer vision. Basically, all kinds of fields of artificial intelligence, where, where in the courses that I took. And, and I really, really fou- found it fascinating. There wasn't, you know, a data science degree back then, like now everybody has a data science degree, but this is like 10 years ago. Uh, at least, you know, in Spain, there wasn't a data science degree.Maria Puertos Calvo:But this is like the closest thing, uh, that, and that was my first contact with, uh, you know, artificial intelligence and machine learning. And I, I loved it. And, and then I did my masters thesis on, uh, kind of like, uh, biometrics in, in terms of applying statistical models to forensic fingerprints to, to understand if a person can be falsely, let's say, accused of a crime because their fingerprint brand only matches a fingerprint that is found in a crime scene. Maria Puertos Calvo:So kind of try to figure out like, how likely is that. Because there have been people in the past that having wrongly convicted, uh, because of their fingerprints have been found in a crime scene. And then after the fact they have found the right person and then, you know, like, uh, it's not a very scientific method, what is followed right now. So that, that was a really cool thing too, that then I never did anything related to that in my life, but, but it was a very cool thing to study when I was in, in school. Nic Fillingham:Well, that, that's fair. I've, I've got some questions about that. That's fascinating. So how did you even stumble upon that as a, as a, as a, as a research focus? Was there a, a particular case you might've read in the, in the news or something like, I, I think I've never heard of people being falsely accused or convicted through having the same fingerprints, I guess, unless you're an identical twin. Maria Puertos Calvo:Mm-hmm (affirmative). (laughs) Actually, I can tell you because I have identical twins, but also that, because I studied a lot of our fingerprints is that identical twins do not have the same fingerprints.Nic Fillingham:Wow.Maria Puertos Calvo:Uh, because fingerprints are formed when you're in the womb. So they're not, they're not like a genetic thing. They happen kind of like, as a random pattern when, when your body is forming in the womb, and they happen, they're different. Uh, so, so humans have unique fingerprints and that's true, but the problem with the, the finger frame recognition is that, it's very partial, and is very imperfect because the, the late latent, it's called the latent fingerprint, the one that is found in a crime scene is then recovered, you know, using like some powder, and it's kind of like, you, you just found some, you know, sweaty thing and a surface, and then you have to lift that from there. Right. Maria Puertos Calvo:And, and that has imperfections in, and it only, it's not going to be like a full fingerprint. You're going to have a partial fingerprint. And then, then you, basically, the way the matching works is using this like little poin- points and, and bifurcations of the riches that exist in your fingerprint. And, and then, you know, looking at the, the location and direction of those, then they're matched with other fingerprints to understand if they're the same one or not. But the, because you don't have the full picture, it is possible that you make a mistake. Maria Puertos Calvo:The one case that it's been kind of really, really famous actually happened with the Madrid bombings that happened in 2004, where, you know, they, they blew up, uh, some trains and, and a couple of hundred people died. Then they, they actually found a fingerprint in one of the, I don't remember, like in the crime scene and it actually match in the FBI fingerprint database. It matched the fingerprint of a lawyer from Portland, Oregon, I believe it's what it was. And then he was initially, you know, uh, I don't know if you ended up being convicted, but, but you know, it wasn't-Nic Fillingham:He was a suspect.Maria Puertos Calvo:... it was a really famous case. Yes. I think he was initially convicted. And then, but then he was not after they found the right person and they, they actually found that yeah, both fingerprints, like the, the guy whose fingerprint it really was. And these other guys, they, their fingerprints both match the crime scene fingerprint, but that's only because it was only a piece of it. Right. You, you don't put your finger, like, you don't roll it left to right. Like when you arrive at the airport, right. That they make you roll your finger, and lay have the whole thing it's, you're maybe just, you know, the, the, the criminal fingerprint is, is very small.Nic Fillingham:Was that a big part of the, the research was trying to understand how much of a fingerprint is necessary for a sort of statistically relevant or sort of accurate determination that it belongs to, to the, to the right person?Maria Puertos Calvo:Yeah. So the results of the research they'd have some outcome around, like, depending on how many of those points that are used for identification, which are called minutia, depending on how, how many of those are available, it changes the probability of a random match with a random person, basically. So the more points you have, the less likely it is that will happen. Nic Fillingham:The one thing, like, as, as we're talking about this, that I sort of half remember from maybe being a kid, I don't know, growing up in Australia is don't koalas have fingerprints that are the same as humans. Did I make that up? Do you know anything about this? Maria Puertos Calvo:(laughs) I'm sure, I have no idea. (laughs) I have never heard such a thing. Nic Fillingham:I have a-Maria Puertos Calvo:Now I wanna know. Nic Fillingham:...I'm gonna have to look this up.Maria Puertos Calvo:Yeah.Nic Fillingham:I have a feeling that koa- koalas, (laughs) have fingerprints that are either very close to or indistinguishable from, from humans. I'm gonna look this one up. Maria Puertos Calvo:I wonder if like a koala could ever be wrongly convicted of a crime. Nic Fillingham:Right, right. So like, if I want to go rob a bank in Australia, all I need to do is like, bring a koala with me and leave the koala in the bank after I've successfully exited the bank with all the gold bars in my backpack. And then the police would show up and they arrest the koala and they'd get the fingerprints and they go, well, it must be the koala. Maria Puertos Calvo:Exactly. Nic Fillingham:This is a foolproof plan. Maria Puertos Calvo:(laughs)Nic Fillingham:I'm glad I discussed this with you on the podcast. Thank you, Marie, for validating my poses.Maria Puertos Calvo:Now, now you can't publish this.Nic Fillingham:Oh, we talked about fingerprints. Oh, crumbs you're right. Yeah. Okay. All right. We have to edit this out of the, (laughs) out of there quick. Maria Puertos Calvo:(laughs)Nic Fillingham:Um, okay. I didn't realize we had talked so much about fingerprints. That's my fault, but I found that fascinating. Thank you. So what happens next? Do you then go to Microsoft? Do you come straight out of your education at university in Madrid, straight to Microsoft? Maria Puertos Calvo:Kind of and no. So what happens next is that while I, I finished the master's part of this PhD, and at this time I'm actually dating my now husband, and he's an American, uh, working in Washington D.C. as an electrical engineer. So I, you know, I finished my master's and my, I say, why, why do I kind of wanna go be in the US uh, so I can be with him. And, you know, I have the space, the scholarship they'll actually lets me go do research abroad and you know, like kind of pays for it. So Maria Puertos Calvo:Find, um, another research group in the University of Maryland, College Park, which is really, really close to, to DC. And, and I go there to do research for, uh, six months. So, I spent six months there also doing research. Uh, also using, uh, machine learning for, for a different around iris recognition. And, you know, the six months went by and I was like, "Well, I want to stay a little longer," like, "I, you know, I really like living here," and I extended that, like, another six months. I... And at that point, you know, I wasn't really allowed to do that with my scholarship, so I just asked my professor to, you know, finance me for that time. And, and, uh, and at that time, I decided, like, you know, I, I actually don't think I wanna, like, pursue this whole PHD thing. Maria Puertos Calvo:So, so I stayed six more months working for him, and then I decided I, I, I'm not a really big fan of academia. I went into research in, in grad school in Spain mostly because there weren't other opportunities. I was super, you know, glad I did 'cause I, I love all the research and the knowledge that I gained with all... You know, with my master's where I learned everything about Artificial Intelligence. But at this point, I really, really wanted to go into industry. Uh, so I applied to a lot of jobs in a lot of different companies. You know, figuring out, like, my background is in biometrics and machine learning. Things like that. Data science is not a word that had ever come to my mind that I was or could be, but I was more, like, interested in, like, you know, maybe software roles related to companies that did things that I had a similar background in.Maria Puertos Calvo:For like a few months, I was looking in... I, I didn't even get calls. And I had no work experience other than, you know, I had been through college and grad school. So, I had... You know, and, and I was from Spain and from a Spanish university, and there was really nothing in my resume that was, like, oh, this is like the person we need to call. So, nobody called me. (laughs) And, and then one day, uh, I, I received a LinkedIn message from a Microsoft recruiter. And she says, "Hey, I have... I'm interested in talking to you about, uh, well, Microsoft." So I said, "Oh, my God. That sounds amazing." So, she calls me and we talk about it, and she's like, "Yeah, there's like this team at Microsoft that is like run mostly by data scientists and what they do is they help prevent fraud, abuse, and compromise for a lot of Microsoft online services." Maria Puertos Calvo:So, they, they basically use data and machine learning to do things like stopping spam for Outlook.com, doing, like, family safety like finding, like, things on the web that, that should be, like, not for children. They were also doing, like, phishing detection on the browser. Um, like phishing URL detection on the browser and a co- compromise detection for Microsoft Account. And so I was like, "Sure, that sounds amazing." You know? "I would love to be in the process." And I was actually lying because I did not want to move to Seattle. (laughs) Like, at that time, I was so hopeful that I will find a job at, you know, somewhere in DC on the east coast, which is like closer to Spain and where, where we lived in. But at the same time, you know, Microsoft calls and you don't say no mostly when nobody else is calling you. Maria Puertos Calvo:Um, so, so I said, "Sure, let's, you know, I, uh... The, the least I can do is, like, see how the interview goes." So, I did the phone screen and then I... They, they flew me to Seattle and I had seven interviews and a lunch inter- and a lunch kind of casual interview. So, it was like an eight hour interview. It was from 9:00 to 5:00. And, you know, everything sounded great, the role sounded great. Um, the, the team were... The things that they were doing sounded super interesting. And, to my surprise, the next day when I'm at the airport waiting for my flight to, to go back to DC, the recruiter calls me and says, "Hey, you, you know, you passed the interview and we're gonna make you an offer. You'll have an offer in the... In the mail tomorrow." I was like, "Oh, my God." (laughs) "What?" Like, I could not... This... It's crazy to me that this was, like, only seven years ago, it... But yeah.Nic Fillingham:Oh, this is seven... So, this was 2014, 2013?Maria Puertos Calvo:Uh, actually, when I did the interview, it was... It was more, more... It was longer. It was 2012. Nic Fillingham:2012. Got it.Maria Puertos Calvo:And then I... And then starting my Microsoft in 2013.Nic Fillingham:Got it.Maria Puertos Calvo:I started as a... I think at that time, they called us analysts. But it was funny because the, the team was very proud on the, the fact that they were one of the first teams doing, like, real data science at Microsoft. But there were too many teams at Microsoft calling themselves, and basically only doing, like, analytics and dashboards and things like that. So, because of that, the team that I was in was really proud, and they didn't want to call themselves data scientists, so they... I don't know. We called ourselves, like, analysts PMs, and then we were from that to decision scientists, uh, which I never understood the, the name. (laughs) Uh, but yeah. So, that's how I started.Nic Fillingham:Okay, so, so that first role was in... I heard you say Outlook.com. So, were you in the sort of consumer email pipeline team? Is that sort of where that, that sat?Maria Puertos Calvo:Yeah. Yeah, so, uh, the team was actually called safety platform. It doesn't exist anymore, but it was a team that provided the abuse, fraud, and, and, like, malicious detections for other teams that were... At the time, it was called the Windows live division.Nic Fillingham:Yes.Maria Puertos Calvo:So, all the... All the teams that were part of that division, they were like the browser, right? Like, Internet Explorer, Hotmail, which was after named Outlook.com. And Microsoft Account, which is the consumer ecosystem, we're all part of that. And our team, basically, helped them with detections and machine learning for their, their abusers and fraudsters and, and, you know, hackers that, that could affect their customers. So, my first role was actually in the spam team, anti-spam team. I was on outbound, outbound spam detection. So, uh, we will build models to detect when users who send spam from Outlook.com accounts out so we could stop that mail basically.Nic Fillingham:And I'd loved to know, like, the models that you were building and training and refining then to detect outbound spam, and then the kinds of sort of machine learning technology that you're, you're playing today. Is there any similarity? Or are they just worlds apart? I mean, we are talking seven years and, you know, seven years in technology may as well be, like, a century. But, you know, is there common threads, is there common learnings from back there, or is everything just changed?Maria Puertos Calvo:Yes, both. Like, there, there are, obviously, common threads. You know, the world has evolved, but what really has evolved is the, the, the underlying infrastructure and tools available for people to deploy machine learning models. Like, back then, we... The production machine learning models that were running either in, like, authentication systems, either in off- you know, offline in the background after the fact, or, or even for the... For the mail. The Microsoft developers have to go and, like, code the actual... Let's say that you use, like, I don't know, logistic regression, which is a very typical, easy, uh, machine learning algorithm, right? They had to, like, code that. They had to, you know... There wasn't like a... Like, library that they could call that they would say, "Okay, apply logistic regression to, to this data with these parameters. Maria Puertos Calvo:Back then, it was, like... People had to code their own machine learning algorithms from, like, the math that backs them, right? So, that was actually... Make things so much, you know, harder. They... There weren't, like, the tools to actually, like, do, like, data manipulation, visualization, modeling, tuning, the way that we have so many things today. So, that, you know, made things kind of hard. Nothing was... Nothing was, like, easy to use for the data scientists. It... There was a lot of work around, you know, how do you... Like, manual labor. It was like, "Okay, I'm gonna, like, run the model with these parameters, and then, like, you know, b- based on the results, you would change that and tweak it a little bit. Maria Puertos Calvo:Today, you have programs that do that for you. And, and then show you all the results in, like, a super cool graph that tells you, uh, you know, like, this is the exact parameters you need to use for maximizing this one, uh, you know, output. Like, if you want to maximize accuracy or precision or recall. That, that is just, like, so much easier.Nic Fillingham:That sounds really fascinating. So, Maria, you now... You now run a team. And I, I would love to sort of get your thoughts on what makes a great data scientist and, and what do you look for when you're hiring into, into your team or into sort of your, your broader organization under, uh, under identity. What perspectives and experience and skills are you trying to sort of add in and how do you find it? Maria Puertos Calvo:Oh, what a great question. Uh, something that I'm actually... That's... The, the answer of that is something I'm refining every day. The, you know, the more, uh, experience I get and the more people I hire. I, I feel like it's always a learning process. It's like, what works and what doesn't. You know, I try to be open-minded and not try to hire everybody to be like me. So, that's... I'm trying to learn from all the people that I hire that are good. Like, what are their, you know... What's, like, special about them that I should try to look in other people that I hire. But I would say, like, some common threads, I think, it's like... Really good communication skills. Maria Puertos Calvo:Like, o- obviously the basics of, you know, being... Having s- a strong background in statistical modeling and machine learning is key. Uh, but many people these days have that. The, the main knowledge is really important in our team because when you apply data science to cyber security, there are a lot of things that make the job really hard. One of them is the, the data is... What... It's called really imbalanced because there are mostly, most of the interactions with, with the system, most of the data represents good activities, and the bad activities are very few and hard to find. They're like maybe less than 1%. So, that makes it harder in general to, to, to get those detections. Maria Puertos Calvo:And the other problem is that you're in an adversarial environment, which means, you know, you're not detecting, you know, a crosswalk in, in a road. Like, it's a typical problem of, of computer vision these days. A crosswalk's gonna be a crosswalk today or tomorrow, but if I detect an attacker in the data today and then we enforce... We do something to stop that attacker or to... Or to get them detected, then the next day they might do things differently because they're going to adapt to what you're doing. So, you need to build machine learning models or detections that are robust enough that use, use what we call features or, or that look at data that it's not going to be easy... Easily gameable. Maria Puertos Calvo:And, and it's really easy to just say, "Oh, you know, there's an attack coming from, I don't know, like, pick a country, like, China. Let's just, like, make China more important in our algorithm." But, like, maybe tomorrow that same attacker just fakes IP addresses Maria Puertos Calvo:Addresses in, in a bot that, that is not in China. It's in, I don't know, in Spain. So, so, you just have to, you know, really get deep into, like, what it means to do data science in our own domain and, and, and gain that knowledge. So, that knowledge, for me, is, is important but it's also something that, that you can gain in the job. But then things like the ability to adapt and, and then also the ability to communicate with all their stakeholders what the data's actually telling us. Because it's, you know... You, you need to be able to tell a story with the data. You need to be able to present the data in a way that other people can understand it, or present the results of your research in, in a way that other people can understand it and really, uh, kind of buy your ideas or, or what you wanna express. And I think that that is really important as well.Nic Fillingham:I sort of wanted to touch on what role... Is there a place in data science for people that, that don't have a sort of traditional or an orthodox or a linear path into the field? Can you come from a different discipline? Can you come from sort of an informal education or background? Can you be self-taught? Can you come from a completely different industry? What, what sort of flexibility exists or should there exist for adding in sort of different perspectives and, and sort of diversity in, in this particular space of machine learning?Maria Puertos Calvo:Yes. There are... Actually, because it's such a new discipline, when I started at Microsoft, none of us started our degrees or our careers thinking that we wanted to go into data science. And my team had people who had, you know, degrees in economics, degrees in psychology, degrees in engineering, and then they had arrived to data science through, through different ways. I think data science is really like a fancy way of saying statistics. It's like big data statistics, right? It's like how do we, uh, model a lot of data to, like, tell us to do predictions, or, or tell us like what, how the data is distributed, or, or how different data based on different data points looks more like it's this category or this other category. So, it's all really, like, from the field of statistics.Maria Puertos Calvo:And statistics is used in any type of research, right? Like, when you... When people in medicine are doing studies or any other kind of social sciences are doing studies, they're using a lot of that, and, and they're more and more using, like, concepts that are really related to what we use in, in data science. So, in that sense, it's, it's really possible to come to a lot of different fields. Generally, the, the people who do really well as data scientists are people who have like a PhD and have then this type of, you know, researching i- but it doesn't really matter what field. I actually know that there, there are some companies out there that their job is to, like, get people that come out of PhD's programs, but they don't have like a... Like a very, you know, like you said, like a linear path to data science, and then, they kind of, like, do like a one year training thing to, like, make them data scientists, because they do have, like, the... All the background in terms of, like, the statistics and the knowledge of the algorithms and everything, but they... Maybe they're, they've been really academic and they're not... They don't maybe know programming or, or things that are more related to the tech or, or they're just don't know how to handle the data that is big. Maria Puertos Calvo:So, they get them ready for... To work in the industry, but the dat- you know, I've met a lot of them in, in, in, in my career, uh, people who have gone through these kind of programs, and some of them are PhDs in physics or any other field. So, that's pretty common. In the self-taught role, it's also very possible. I think people who, uh, maybe started as, like, software engineers, for example, and then there's so much content out there that is even free if you really wanna learn data science and machine learning. You can, you know, go from anything from Coursera to YouTube, uh, things that are free, things that are paid, but that you can actually gain great knowledge from people who are the best in the world at teaching this stuff. So, definitely possible to do it that way as well.Nic Fillingham:Awesome. Before we let you go, we talked about the perfect guacamole recipe last time because you had that in your Twitter profile.Maria Puertos Calvo:Mm-hmm (affirmative). (laughs)Nic Fillingham:Do you recall that? I'm not making this up, right? (laughs)Maria Puertos Calvo:I do. No. (laughs)Nic Fillingham:All right. So, w- so we had the perfect guacamole recipe. I wondered what was your perfect... I- is it like... I wanted to ask about tacos, like, what your thoughts were on tacos, but I, I don't wanna be rote. I don't wanna be, uh, too cliché. So, maybe is there another sort of food that you love that you would like to leave us with, your sort of perfect recipe?Maria Puertos Calvo:(laughs) That's really funny. I, I actually had tacos for lunch today. That is, uh... Yeah. (laughs)Nic Fillingham:You did? What... Tell me about it. What did you have?Maria Puertos Calvo:I didn't make them, though. I, I went out to eat them. Uh-Nic Fillingham:Were they awesome? Did you love them?Maria Puertos Calvo:They were really good, yeah. So, I think it's-Nic Fillingham:All right. Tell us about those tacos.Maria Puertos Calvo:Tacos is one of my favorite foods. But I actually have a taco recipe that I make that it's... I find it really good and really easy. So, it's shrimp tacos.Nic Fillingham:Okay. All right.Maria Puertos Calvo:So, it's, it's super easy. You just, like, marinate your shrimp in, like, a mix of lime, Chipotle... You know those, like, Chipotle chilis that come in a can and with, like, adobo sauce?Nic Fillingham:Yeah, the l- it's got like a little... It's like a half can. And in-Maria Puertos Calvo:Yeah, and it's, like, really dark, the sauce, and-Nic Fillingham:Really dark I think. And in my house, you open the can and you end up only using about a third of it and you go, "I'm gonna use this later," and then you put it in the fridge.Maria Puertos Calvo:Yes, and it's like-Nic Fillingham:And then it... And then you find it, like, six months later and it's evolved and it's semi-sentient. But I know exactly what you're talking about.Maria Puertos Calvo:Exactly. So that... You, you put, like, some of those... That, like, very smokey sauce that comes in that can or, or you can chop up some of the chili in there as well. And then lime and honey. And that's it. You marinate your shrimp in that and then you just, like, cook them in a pan. And then you put that in a tortilla, you know, like corn preferably. But you can use, you know, flour if that's your choice. Uh, and then you make your taco with the... That shrimp, and then you put, like... You, you pickle some sliced red onions very lightly with some lime juice and some salt, maybe for like 10 minutes. You put that on... You know, on your shrimp, and then you can put some shredded cabbage and some avocado, and ready to go. Delicious shrimp tacos for a week night.Nic Fillingham:Fascinating. I'm gonna try this recipe. Maria Puertos Calvo:Okay.Nic Fillingham:Sounds awesome.Maria Puertos Calvo:Let me know.Nic Fillingham:Maria, thank you again so much for your time. This has been fantastic having you back. The last question, I think it's super quick, are you hiring at the moment, and if so, where can folks go to learn about how they may end up potentially being on your team or, or being in your group somewhere?Maria Puertos Calvo:Yes, I am actually. Our team is doubling in size. I am hiring data scientists in Atlanta and in Dublin right now. So, we're gonna be, you know, a very, uh, worldly team, uh, 'cause I'm based in Seattle. So, if you go to Microsoft jobs and search in hashtag identity jobs, I think, uh, all my jobs should be listed there. Um, looking for, you know, data scientists, as I said, to work on fraud and, and cyber security and it's a... It's a great team. Hopefully, yeah, if you're... If that's something you're into, please, apply.Nic Fillingham:Awesome. We will put the link in the show notes. Thank you so much for your time. It's been a great conversation.Maria Puertos Calvo:Always a pleasure, Nic. Thank you so much. Natalia Godyla:Well, we had a great time unlocking insights into security, from research to Artificial Intelligence. Keep an eye out for our next episode.Nic Fillingham:And don't forget to tweet us @msftsecurity or email us at securityunlocked@microsoft.com with topics you'd like to hear on a future episode. Until then, stay safe.Natalia Godyla:Stay secure.